Expression Profile of Laccase Gene Family in White-Rot Basidiomycete Lentinula edodes under Different Environmental Stresses

Author:

Yan LianlianORCID,Xu Ruiping,Bian Yinbing,Li Hongxian,Zhou YanORCID

Abstract

Laccases belong to ligninolytic enzymes and play important roles in various biological processes of filamentous fungi, including fruiting-body formation and lignin degradation. The process of fruiting-body development in Lentinula edodes is complex and is greatly affected by environmental conditions. In this paper, 14 multicopper oxidase-encoding (laccase) genes were analyzed in the draft genome sequence of L. edodes strain W1-26, followed by a search of multiple stress-related Cis-elements in the promoter region of these laccase genes, and then a transcription profile analysis of 14 laccase genes (Lelcc) under the conditions of different carbon sources, temperatures, and photoperiods. All laccase genes were significantly regulated by varying carbon source materials. The expression of only two laccase genes (Lelcc5 and Lelcc6) was induced by sodium-lignosulphonate and the expression of most laccase genes was specifically upregulated in glucose medium. Under different temperature conditions, the expression levels of most laccase genes decreased at 39 °C and transcription was significantly increased for Lelcc1, Lelcc4, Lelcc5, Lelcc9, Lelcc12, Lelcc13, and Lelcc14 after induction for 24 h at 10 °C, indicating their involvement in primordium differentiation. Tyrosinase, which is involved in melanin synthesis, was clustered with the same group as Lelcc4 and Lelcc7 in all the different photoperiod treatments. Meanwhile, five laccase genes (Lelcc8, Lelcc9, Lelcc12, Lelcc13, and Lelcc14) showed similar expression profiles to that of two blue light receptor genes (LephrA and LephrB) in the 12 h light/12 h dark treatment, suggesting the involvement of laccase genes in the adaptation process of L. edodes to the changing environment and fruiting-body formation. This study contributes to our understanding of the function of the different Lelcc genes and facilitates the screening of key genes from the laccase gene family for further functional research.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3