Unbiased Quantitative Single-Cell Morphometric Analysis to Identify Microglia Reactivity in Developmental Brain Injury

Author:

St. Pierre Mark1ORCID,Duck Sarah Ann2ORCID,Nazareth Michelle2ORCID,Fung Camille3,Jantzie Lauren L.1,Chavez-Valdez Raul1ORCID

Affiliation:

1. Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA

2. Department of Molecular and Cellular Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD 21205, USA

3. Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT 84132, USA

Abstract

Microglia morphological studies have been limited to the process of reviewing the most common characteristics of a group of cells to conclude the likelihood of a “pathological” milieu. We have developed an Imaris-software-based analytical pipeline to address selection and operator biases, enabling use of highly reproducible machine-learning algorithms to quantify at single-cell resolution differences between groups. We hypothesized that this analytical pipeline improved our ability to detect subtle yet important differences between groups. Thus, we studied the temporal changes in Iba1+ microglia-like cell (MCL) populations in the CA1 between P10–P11 and P18–P19 in response to intrauterine growth restriction (IUGR) at E12.5 in mice, chorioamnionitis (chorio) at E18 in rats and neonatal hypoxia–ischemia (HI) at P10 in mice. Sholl and convex hull analyses differentiate stages of maturation of Iba1+ MLCs. At P10–P11, IUGR or HI MLCs were more prominently ‘ameboid’, while chorio MLCs were hyper-ramified compared to sham. At P18–P19, HI MLCs remained persistently ‘ameboid’ to ‘transitional’. Thus, we conclude that this unbiased analytical pipeline, which can be adjusted to other brain cells (i.e., astrocytes), improves sensitivity to detect previously elusive morphological changes known to promote specific inflammatory milieu and lead to worse outcomes and therapeutic responses.

Funder

National Institutes of Health

JHU-SOM Clinician Scientist Award

The Thomas Wilson Foundation

JHU Innovation Grant

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3