GPR-160 Receptor Signaling in the Dorsal Vagal Complex of Male Rats Modulates Meal Microstructure and CART-Mediated Hypophagia

Author:

Sanchez-Navarro Marcos J.1ORCID,Borner Tito1,Reiner Benjamin C.1ORCID,Crist Richard C.1,Samson Willis K.2,Yosten Gina L. C.2,Stein Lauren1,Hayes Matthew R.1ORCID

Affiliation:

1. Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

2. Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, USA

Abstract

The g-protein coupled receptor GPR-160, recently identified as a putative receptor for the cocaine and amphetamine-regulated transcript (CART) peptide, shows abundant expression in the energy-balance control nuclei, including the dorsal vagal complex (DVC). However, its physiological role in the control of food intake has yet to be fully explored. Here, we performed a virally mediated, targeted knockdown (KD) of Gpr160 in the DVC of male rats to evaluate its physiological role in control of feeding. Our results indicate that DVC Gpr160 KD affects meal microstructure. Specifically, DVC Gpr160 KD animals consumed more frequent, but shorter meals during the dark phase and showed decreased caloric intake and duration of meals during the light phase. Cumulatively, however, these bidirectional effects on feeding resulted in no difference in body weight gain. We next tested the role of DVC GPR-160 in mediating the anorexigenic effects of exogenous CART. Our results show that DVC Gpr160 KD partially attenuates CART’s anorexigenic effects. To further characterize Gpr160+ cells in the DVC, we utilized single-nucleus RNA sequencing data to uncover abundant GPR-160 expression in DVC microglia and only minimal expression in neurons. Altogether, our results suggest that DVC CART signaling may be mediated by Gpr160+ microglia, which in turn may be modulating DVC neuronal activity to control food intake.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3