CovDif, a Tool to Visualize the Conservation between SARS-CoV-2 Genomes and Variants

Author:

Cedeño-Pérez Luis F.,Gómez-Romero LauraORCID

Abstract

The spread of the newly emerged severe acute respiratory syndrome (SARS-CoV-2) virus has led to more than 430 million confirmed cases, including more than 5.9 million deaths, reported worldwide as of 24 February 2022. Conservation of viral genomes is important for pathogen identification and diagnosis, therapeutics development and epidemiological surveillance to detect the emergence of new viral variants. An intense surveillance of virus variants has led to the identification of Variants of Interest and Variants of Concern. Although these classifications dynamically change as the pandemic evolves, they have been useful to guide public health efforts on containment and mitigation. In this work, we present CovDif, a tool to detect conserved regions between groups of viral genomes. CovDif creates a conservation landscape for each group of genomes of interest and a differential landscape able to highlight differences in the conservation level between groups. CovDif is able to identify loss in conservation due to point mutations, deletions, inversions and chromosomal rearrangements. In this work, we applied CovDif to SARS-CoV-2 clades (G, GH, GR, GV, L, O, S and G) and variants. We identified all regions for any defining SNPs. We also applied CovDif to a group of population genomes and evaluated the conservation of primer regions for current SARS-CoV-2 detection and diagnostic protocols. We found that some of these protocols should be applied with caution as few of the primer-template regions are no longer conserved in some SARS-CoV-2 variants. We conclude that CovDif is a tool that could be widely applied to study the conservation of any group of viral genomes as long as whole genomes exist.

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applying the digital data and the bioinformatics tools in SARS-CoV-2 research;Computational and Structural Biotechnology Journal;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3