Acoustic Forceps Based on Focused Acoustic Vortices with Different Topological Charges

Author:

Du Libin1,Hu Gehao2,Hu Yantao3,Wang Qingdong1

Affiliation:

1. College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China

3. Department of Modern Architecture, Linyi Vocational College, Linyi 276017, China

Abstract

For enhanced energy concentration with improved flexibility for object manipulation, a focused acoustic vortex (FAV) is designed using a sector planar piston transducer array and acoustic lens that can produce the effective concentration of the acoustic field to perform the focusing function. Compared to the Gaussian beam, which tends to cause the object to deviate from the axis of acoustic propagation, FAVs can form a central valley region to firmly bind the objects, thus preventing off-target effects. The heat energy in the paraxial region is transferred to the vortex center in the form of heat transfer so that the temperature-sensitive liposomes captured can quickly release drugs, which has a good effect on targeted drug administration. The focused acoustic wave stopped acting on the tissue (gel) for 2 s, the temperature of the vortex center continued to rise, reaching 41.5 °C at the moment of 3.7 s, at which point the liposomes began to release the drug. The FAVs capture the drug and use its thermal effect to achieve accurate and rapid treatment. The simulation results show that the drug release temperature of temperature-sensitive liposomes can be achieved by controlling the action time of the vortices. This study provides a reliable theoretical basis for the clinical application of targeted drugs.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3