Optimization of Spatial and Temporal Configuration of a Pressure Sensing Array to Predict Posture and Mobility in Lying

Author:

Caggiari Silvia1ORCID,Jiang Liudi2,Filingeri Davide1,Worsley Peter1ORCID

Affiliation:

1. Skin Sensing Research Group, School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK

2. School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK

Abstract

Commercial pressure monitoring systems have been developed to assess conditions at the interface between mattress/cushions of individuals at risk of developing pressure ulcers. Recently, they have been used as a surrogate for prolonged posture and mobility monitoring. However, these systems typically consist of high-resolution sensing arrays, sampling data at more than 1 Hz. This inevitably results in large volumes of data, much of which may be redundant. Our study aimed at evaluating the optimal number of sensors and acquisition frequency that accurately predict posture and mobility during lying. A continuous pressure monitor (ForeSitePT, Xsensor, Calgary, Canada), with 5664 sensors sampling at 1 Hz, was used to assess the interface pressures of healthy volunteers who performed lying postures on two different mattresses (foam and air designs). These data were down sampled in the spatial and temporal domains. For each configuration, pressure parameters were estimated and the area under the Receiver Operating Characteristic curve (AUC) was used to determine their ability in discriminating postural change events. Convolutional Neural Network (CNN) was employed to predict static postures. There was a non-linear decline in AUC values for both spatial and temporal down sampling. Results showed a reduction of the AUC for acquisition frequencies lower than 0.3 Hz. For some parameters, e.g., pressure gradient, the lower the sensors number the higher the AUC. Posture prediction showed a similar accuracy of 63−71% and 84−87% when compared to the commercial configuration, on the foam and air mattress, respectively. This study revealed that accurate detection of posture and mobility events can be achieved with a relatively low number of sensors and sampling frequency.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3