IGH::NSD2 Fusion Gene Transcript as Measurable Residual Disease Marker in Multiple Myeloma

Author:

Bors András1,Kozma András1ORCID,Tomán Ágnes1ORCID,Őrfi Zoltán1ORCID,Kondor Nóra1,Tasnády Szabolcs2,Vályi-Nagy István2,Reményi Péter2,Mikala Gábor2ORCID,Andrikovics Hajnalka1

Affiliation:

1. Laboratory of Molecular Genetics, Central Hospital of Southern Pest-National Institute of Hematology and Infectious Disease, H-1097 Budapest, Hungary

2. Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest-National Institute of Hematology and Infectious Disease, H-1097 Budapest, Hungary

Abstract

Multiple myeloma (MM) is the second most common hematological malignancy. Approximately 15% of MM patients are affected by the t(4;14) translocation resulting in the IGH::NSD2 fusion transcript. Breakage occurs in three major breakpoint regions within the NSD2 gene (MB4-1, MB4-2, and MB4-3), where MB4-1 leads to the production of full-length protein, while truncated proteins are expressed in the other two cases. Measurable residual disease (MRD) has been conclusively established as a crucial prognostic factor in MM. The IGH::NSD2 fusion transcript can serve as a sensitive MRD marker. Using bone marrow (BM) and peripheral blood (PB) samples from 111 patients, we developed a highly sensitive quantitative real-time PCR (qPCR) and digital PCR (dPCR) system capable of detecting fusion mRNAs with a sensitivity of up to 1:100,000. PB samples exhibited sensitivity three orders of magnitude lower compared to BM samples. Patients with an MB4-2 breakpoint demonstrated significantly reduced overall survival (p = 0.003). Our novel method offers a simple and sensitive means for detecting MRD in a substantial proportion of MM patients. Monitoring may be carried out even from PB samples. The literature lacks consensus regarding survival outcomes among patients with different NSD2 breakpoints. Our data align with previous findings indicating that patients with the MB4-2 breakpoint type tend to exhibit unfavorable overall survival.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3