A Comprehensive Bioinformatic Analysis of RNA-seq Datasets Reveals a Differential and Variable Expression of Wildtype and Variant UGT1A Transcripts in Human Tissues and Their Deregulation in Cancers

Author:

Hu Dong Gui1ORCID,Marri Shashikanth1,Hulin Julie-Ann1,McKinnon Ross A.1ORCID,Mackenzie Peter I.1,Meech Robyn1

Affiliation:

1. College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide 5042, Australia

Abstract

The UGT1A locus generates over 60 different alternatively spliced transcripts and 30 circular RNAs. To date, v2 and v3 transcripts are the only variant UGT1A transcripts that have been functionally characterized. Both v2 and v3 transcripts encode the same inactive variant UGT1A proteins (i2s) that can negatively regulate glucuronidation activity and influence cancer cell metabolism. However, the abundance and interindividual variability in the expression of v2 and v3 transcripts in human tissues and their potential deregulation in cancers have not been comprehensively assessed. To address this knowledge gap, we quantified the expression levels of v1, v2, and v3 transcripts using RNA-seq datasets with large cohorts of normal tissues and paired normal and tumor tissues from patients with six different cancer types (liver, kidney, colon, stomach, esophagus, and bladder cancer). We found that v2 and v3 abundance varied significantly between different tissue types, and that interindividual variation was also high within the same tissue type. Moreover, the ratio of v2 to v3 variants varied between tissues, implying their differential regulation. Our results showed higher v2 abundance in gastrointestinal tissues than liver and kidney tissues, suggesting a more significant negative regulation of glucuronidation by i2 proteins in gastrointestinal tissues than in liver and kidney tissues. We further showed differential deregulation of wildtype (v1) and variant transcripts (v2, v3) in cancers that generally increased the v2/v1 and/or v3/v1 expression ratios in tumors compared to normal tissues, indicating a more significant role of the variants in tumors. Finally, we report ten novel UGT1A transcripts with novel 3′ terminal exons, most of which encode variant proteins with a similar structure to UGT1A_i2 proteins. These findings further emphasize the diversity of the UGT1A transcriptome and proteome.

Funder

National Health and Medical Research Council

Australia Research Council

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3