A Weakly Supervised Deep Learning Method for Guiding Ovarian Cancer Treatment and Identifying an Effective Biomarker

Author:

Wang Ching-WeiORCID,Lee Yu-Ching,Chang Cheng-ChangORCID,Lin Yi-JiaORCID,Liou Yi-An,Hsu Po-ChaoORCID,Chang Chun-Chieh,Sai Aung-Kyaw-Oo,Wang Chih-HungORCID,Chao Tai-KuangORCID

Abstract

Ovarian cancer is a common malignant gynecological disease. Molecular target therapy, i.e., antiangiogenesis with bevacizumab, was found to be effective in some patients of epithelial ovarian cancer (EOC). Although careful patient selection is essential, there are currently no biomarkers available for routine therapeutic usage. To the authors’ best knowledge, this is the first automated precision oncology framework to effectively identify and select EOC and peritoneal serous papillary carcinoma (PSPC) patients with positive therapeutic effect. From March 2013 to January 2021, we have a database, containing four kinds of immunohistochemical tissue samples, including AIM2, c3, C5 and NLRP3, from patients diagnosed with EOC and PSPC and treated with bevacizumab in a hospital-based retrospective study. We developed a hybrid deep learning framework and weakly supervised deep learning models for each potential biomarker, and the experimental results show that the proposed model in combination with AIM2 achieves high accuracy 0.92, recall 0.97, F-measure 0.93 and AUC 0.97 for the first experiment (66% training and 34%testing) and high accuracy 0.86 ± 0.07, precision 0.9 ± 0.07, recall 0.85 ± 0.06, F-measure 0.87 ± 0.06 and AUC 0.91 ± 0.05 for the second experiment using five-fold cross validation, respectively. Both Kaplan-Meier PFS analysis and Cox proportional hazards model analysis further confirmed that the proposed AIM2-DL model is able to distinguish patients gaining positive therapeutic effects with low cancer recurrence from patients with disease progression after treatment (p < 0.005).

Funder

Ministry of Science and Technology, Taiwan

Tri-Service General Hospital, Taiwan

National Taiwan University of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference61 articles.

1. Ovarian cancer statistics, 2018;Torre;CA Cancer J. Clin.,2018

2. Advances in ovarian cancer therapy;Cortez;Cancer Chemother. Pharmacol.,2018

3. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up;Ledermann;Ann. Oncol.,2013

4. Serous papillary peritoneal carcinoma: Unknown primary tumour, ovarian cancer counterpart or a distinct entity? A systematic review;Pentheroudakis;Crit. Rev. Oncol./Hematol.,2010

5. Targeted therapy in ovarian cancer;Lim;Women’s Health,2016

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3