Overcoming Barriers in Cancer Biology Research: Current Limitations and Solutions

Author:

Colonna Giovanni1

Affiliation:

1. Medical Informatics Unit–AOU L. Vanvitelli, Università della Campania, 80138 Naples, Italy

Abstract

Cancer research faces significant biological, technological, and systemic limitations that hinder the development of effective therapies and improved patient outcomes. Traditional preclinical models, such as 2D and 3D cell cultures, murine xenografts, and organoids, often fail to reflect the complexity of human tumor architecture, microenvironment, and immune interactions. This discrepancy results in promising laboratory findings not always translating effectively into clinical success. A core obstacle is tumor heterogeneity, characterized by diverse genetic, epigenetic, and phenotypic variations within tumors, which complicates treatment strategies and contributes to drug resistance. Hereditary malignancies and cancer stem cells contribute strongly to generating this complex panorama. Current early detection technologies lack sufficient sensitivity and specificity, impeding timely diagnosis. The tumor microenvironment, with its intricate interactions and resistance-promoting factors, further promotes treatment failure. Additionally, we only partially understand the biological processes driving metastasis, limiting therapeutic advances. Overcoming these barriers involves not only the use of new methodological approaches and advanced technologies, but also requires a cultural effort by researchers. Many cancer studies are still essentially observational. While acknowledging their significance, it is crucial to recognize the shift from deterministic to indeterministic paradigms in biomedicine over the past two to three decades, a transition facilitated by systems biology. It has opened the doors of deep metabolism where the functional processes that control and regulate cancer progression operate. Beyond biological barriers, systemic challenges include limited funding, regulatory complexities, and disparities in cancer care access across different populations. These socio-economic factors exacerbate research stagnation and hinder the translation of scientific innovations into clinical practice. Overcoming these obstacles requires multidisciplinary collaborations, advanced modeling techniques that better emulate human cancer, and innovative technologies for early detection and targeted therapy. Strategic policy initiatives must address systemic barriers, promoting health equity and sustainable research funding. While the complexity of cancer biology and systemic challenges are formidable, ongoing scientific progress and collaborative efforts inspire hope for breakthroughs that can transform cancer diagnosis, treatment, and survival outcomes worldwide.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3