Granulocyte Colony Stimulating Factor Expression in Breast Cancer and Its Association with Carbonic Anhydrase IX and Immune Checkpoints

Author:

Chafe Shawn C.,Riaz Nazia,Burugu Samantha,Gao Dongxia,Leung Samuel C. Y.,Lee Anna F.ORCID,Lee Cheng-Han,Dedhar ShoukatORCID,Nielsen Torsten O.

Abstract

Purpose: Granulocyte colony-stimulating factor (G-CSF) and hypoxia modulate the tumour immune microenvironment. In model systems, hypoxia-induced carbonic anhydrase IX (CAIX) has been associated with G-CSF and immune responses, including M2 polarization of macrophages. We investigated whether these associations exist in human breast cancer specimens, their relation to breast cancer subtypes, and clinical outcome. Methods: Using validated protocols and prespecified scoring methodology, G-CSF expression on carcinoma cells and CD163 expression on tumour-associated macrophages were assayed by immunohistochemistry and applied to a tissue microarray series of 2960 primary excision specimens linked to clinicopathologic, biomarker, and outcome data. Results: G-CSFhigh expression showed a significant positive association with ER negativity, HER2 positivity, presence of CD163+ M2 macrophages, and CAIX expression. In univariate analysis, G-CSFhigh phenotype was associated with improved survival in non-luminal cases, although the CAIX+ subset had a significantly adverse prognosis. A significant positive association was observed between immune checkpoint biomarkers on tumour-infiltrating lymphocytes and both G-CSF- and CAIX-expressing carcinoma cells. Immune checkpoint biomarkers correlated significantly with favourable prognosis in G-CSFhigh/non-luminal cases independent of standard clinicopathological features. Conclusions: The prognostic associations linking G-CSF to immune biomarkers and CAIX strongly support their immunomodulatory roles in the tumour microenvironment.

Funder

Canadian Cancer Society

Canadian Institutes of Health Research Foundation Scheme Grant

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3