Photodynamic Therapy for Glioblastoma: Illuminating the Path toward Clinical Applicability

Author:

Bhanja Debarati1ORCID,Wilding Hannah1,Baroz Angel1,Trifoi Mara1,Shenoy Ganesh1,Slagle-Webb Becky1,Hayes Daniel2ORCID,Soudagar Yasaman3,Connor James14,Mansouri Alireza14

Affiliation:

1. Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA

2. Department of Biomedical Engineering, Pennsylvania State University, State College, PA 16801, USA

3. Neurescence Inc., Toronto, ON M5R 2Y9, Canada

4. Penn State Cancer Institute, Penn State Health, Hershey, PA 17033, USA

Abstract

Glioblastoma (GBM) is the most common adult brain cancer. Despite extensive treatment protocols comprised of maximal surgical resection and adjuvant chemo–radiation, all glioblastomas recur and are eventually fatal. Emerging as a novel investigation for GBM treatment, photodynamic therapy (PDT) is a light-based modality that offers spatially and temporally specific delivery of anti-cancer therapy with limited systemic toxicity, making it an attractive option to target GBM cells remaining beyond the margins of surgical resection. Prior PDT approaches in GBM have been predominantly based on 5-aminolevulinic acid (5-ALA), a systemically administered drug that is metabolized only in cancer cells, prompting the release of reactive oxygen species (ROS), inducing tumor cell death via apoptosis. Hence, this review sets out to provide an overview of current PDT strategies, specifically addressing both the potential and shortcomings of 5-ALA as the most implemented photosensitizer. Subsequently, the challenges that impede the clinical translation of PDT are thoroughly analyzed, considering relevant gaps in the current PDT literature, such as variable uptake of 5-ALA by tumor cells, insufficient tissue penetrance of visible light, and poor oxygen recovery in 5-ALA-based PDT. Finally, novel investigations with the potential to improve the clinical applicability of PDT are highlighted, including longitudinal PDT delivery, photoimmunotherapy, nanoparticle-linked photosensitizers, and near-infrared radiation. The review concludes with commentary on clinical trials currently furthering the field of PDT for GBM. Ultimately, through addressing barriers to clinical translation of PDT and proposing solutions, this review provides a path for optimizing PDT as a paradigm-shifting treatment for GBM.

Funder

Center for Biodevices Seed Grant, Woodward Endowment

Pennsylvania State University

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3