TRPA1 Contributes to FGFR2c Signaling and to Its Oncogenic Outcomes in Pancreatic Ductal Adenocarcinoma-Derived Cell Lines

Author:

Mancini Vanessa1,Raffa Salvatore1ORCID,Fiorio Pla Alessandra2ORCID,French Deborah1,Torrisi Maria Rosaria1,Ranieri Danilo13ORCID,Belleudi Francesca1

Affiliation:

1. Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy

2. Turin Cell Physiology Laboratory, Department of Life Sciences and Systems Biology, University of Turin, 10125 Torino, Italy

3. Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi “Link Campus University”, 00165 Rome, Italy

Abstract

Fibroblast growth factor receptor (FGFR) signaling is a key modulator of cellular processes dysregulated in cancer. We recently found that the high expression of the mesenchymal FGFR2c variant in human pancreatic ductal adenocarcinoma (PDAC)-derived cells triggers the PKCε-mediated improvement of EMT and of MCL-1/SRC-dependent cell invasion. Since other membrane proteins can affect the receptor tyrosine kinase signaling, including transient receptor potential channels (TRPs), in this work, we investigated the role of TRPs in the FGFR2c/PKCε oncogenic axis. Our results highlighted that either the FGFR2c/PKCε axis shut-off obtained by shRNA or its sustained activation via ligand stimulation induces TRPA1 downregulation, suggesting a channel/receptor dependence. Indeed, biochemical molecular and immunofluorescence approaches demonstrated that the transient depletion of TRPA1 by siRNA was sufficient to attenuate FGFR2c downstream signaling pathways, as well as the consequent enhancement of EMT. Moreover, the biochemical check of MCL1/SRC signaling and the in vitro assay of cellular motility suggested that TRPA1 also contributes to the FGFR2c-induced enhancement of PDAC cell invasiveness. Finally, the use of a selective channel antagonist indicated that the contribution of TRPA1 to the FGFR2c oncogenic potential is independent of its pore function. Thus, TRPA1 could represent a putative candidate for future target therapies in PDAC.

Funder

MIUR

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3