Immediate Sample Fixation Increases Circulating Tumour Cell (CTC) Capture and Preserves Phenotype in Head and Neck Squamous Cell Carcinoma: Towards a Standardised Approach to Microfluidic CTC Biomarker Discovery

Author:

Payne Karl,Brooks Jill M.,Taylor Graham S.ORCID,Batis NikolaosORCID,Noyvert Boris,Pan Yi,Nankivell PaulORCID,Mehanna HishamORCID

Abstract

Introduction: Research demonstrates strong evidence that circulating tumour cells (CTCs) can provide diagnostic and/or prognostic biomarkers in head and neck squamous cell carcinoma (HNSCC) and a potential tool for therapeutic stratification. However, the question still remains as to the optimum method of CTC enrichment and how this can be translated into clinical practice. We aimed to evaluate the Parsortix microfluidic device for CTC enrichment and characterisation in HNSCC, seeking to optimise a sample collection and processing protocol that preserves CTC integrity and phenotype. Method: Spiking experiments of the FaDu and SCC040 HNSCC cell lines were used to determine the Parsortix capture rate of rare “CTC-like” cells. Capture rates of cancer cells spiked into EDTA blood collections tubes (BCTs) were compared to the Transfix fixative BCT and Cytodelics whole blood freezing protocol. The Lexogen Quantseq library preparation was used to profile gene expression of unfixed cells before and after microfluidic enrichment and enriched cell line spiked Transfix blood samples. An antibody panel was optimised to enable immunofluorescence microscopy CTC detection in HNSCC patient Transfix blood samples, using epithelial (EpCAM) and mesenchymal (N-cadherin) CTC markers. Results: Across a spiked cell concentration range of 9–129 cells/mL, Parsortix demonstrated a mean cell capture rate of 53.5% for unfixed cells, with no significant relationship between spiked cell concentration and capture rate. Samples preserved in Transfix BCTs demonstrated significantly increased capture rates at 0 h (time to processing) compared to EDTA BCTs (65.3% vs. 51.0%). Capture rates in Transfix BCTs were maintained at 24 h and 72 h timepoints, but dropped significantly in EDTA BCTs. Gene expression profiling revealed that microfluidic enrichment of unfixed cell lines caused downregulation of RNA processing/binding gene pathways and upregulation of genes involved in cell injury, apoptosis and oxidative stress. RNA was successfully extracted and sequenced from Transfix preserved cells enriched using Parsortix, demonstrating epithelial specific transcripts from spiked cells. In a proof-of-concept cohort of four patients with advanced HNSCC, CTCs were successfully identified and visualised with epithelial and epithelial-mesenchymal phenotypes. Conclusion: We have optimised a protocol for detection of CTCs in HNSCC with the Parsortix microfluidic device, using Transfix BCTs. We report a significant benefit, both in terms of cell capture rates and preserving cell phenotype, for using a fixative BCT- particularly if samples are stored before processing. In the design of large cohort multi-site clinical trials, such data are of paramount importance.

Funder

Cancer Research UK

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3