Molecular Classification of Colorectal Cancer by microRNA Profiling: Correlation with the Consensus Molecular Subtypes (CMS) and Validation of miR-30b Targets

Author:

Paz-Cabezas Mateo,Calvo-López Tania,Romera-Lopez Alejandro,Tabas-Madrid Daniel,Ogando Jesus,Fernández-Aceñero María-JesúsORCID,Sastre Javier,Pascual-Montano Alberto,Mañes SantosORCID,Díaz-Rubio EduardoORCID,Perez-Villamil BeatrizORCID

Abstract

Colorectal cancer consensus molecular subtypes (CMSs) are widely accepted and constitutes the basis for patient stratification to improve clinical practice. We aimed to find whether miRNAs could reproduce molecular subtypes, and to identify miRNA targets associated to the High-stroma/CMS4 subtype. The expression of 939 miRNAs was analyzed in tumors classified in CMS. TALASSO was used to find gene-miRNA interactions. A miR-mRNA regulatory network was constructed using Cytoscape. Candidate gene-miR interactions were validated in 293T cells. Hierarchical-Clustering identified three miRNA tumor subtypes (miR-LS; miR-MI; and miR-HS) which were significantly associated (p < 0.001) to the reported mRNA subtypes. miR-LS correlated with the low-stroma/CMS2; miR-MI with the mucinous-MSI/CMS1 and miR-HS with high-stroma/CMS4. MicroRNA tumor subtypes and association to CMSs were validated with TCGA datasets. TALASSO identified 1462 interactions (p < 0.05) out of 21,615 found between 176 miRs and 788 genes. Based on the regulatory network, 88 miR-mRNA interactions were selected as candidates. This network was functionally validated for the pair miR-30b/SLC6A6. We found that miR-30b overexpression silenced 3′-UTR-SLC6A6-driven luciferase expression in 293T-cells; mutation of the target sequence in the 3′-UTR-SLC6A6 prevented the miR-30b inhibitory effect. In conclusion CRC subtype classification using a miR-signature might facilitate a real-time analysis of the disease course and treatment response.

Funder

IMMUNOTHERCAN Comunidad de Madrid

Fundacion Mutua Madrileñ

Bayer Healthcare

Fundacion Rodriguez-Pascual

Fundacion 2000 Merck-Serono

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3