Exploring the In Vitro and In Vivo Therapeutic Potential of BRAF and MEK Inhibitor Combination in NRAS-Mutated Melanoma

Author:

Niessner Heike12ORCID,Hüsch Anna1,Kosnopfel Corinna3ORCID,Meinhardt Matthias45,Westphal Dana56,Meier Friedegund567,Schilling Bastian8ORCID,Sinnberg Tobias129ORCID

Affiliation:

1. Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany

2. Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, 72076 Tuebingen, Germany

3. Department of Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany

4. Department of Pathology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany

5. National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany

6. Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, 01307 Dresden, Germany

7. Center for Regenerative Therapies Dresden, TU Dresden, 01307 Dresden, Germany

8. Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany

9. Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany

Abstract

Introduction: Patients with NRAS-mutant metastatic melanoma often have an aggressive disease requiring a fast-acting, effective therapy. The MEK inhibitor binimetinib shows an overall response rate of 15% in patients with NRAS-mutant melanoma, providing a backbone for combination strategies. Our previous studies demonstrated that in NRAS-mutant melanoma, the antitumor activity of the MEK inhibitor binimetinib was significantly potentiated by the BRAFV600E/K inhibitor encorafenib through the induction of ER stress, leading to melanoma cell death by apoptotic mechanisms. Encorafenib combined with binimetinib was well tolerated in a phase III trial showing potent antitumor activity in BRAF-mutant melanoma, making a rapid evaluation in NRAS-mutant melanoma imminently feasible. These data provide a mechanistic rationale for the evaluation of binimetinib combined with encorafenib in preclinical and clinical studies on NRAS-mutant metastatic melanoma. Methods: The combination of BRAFi plus MEKi was tested in a monolayer culture of patient-derived cell lines and in corresponding patient-derived tissue slice cultures of NRAS-mutant melanoma. To investigate the treatment in vivo, NSG (NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice were subcutaneously injected with three different BRAF wild-type melanoma models harboring oncogenic NRAS mutations and treated orally with encorafenib (6 mg/kg body weight, daily) with or without binimetinib (8 mg/kg body weight, twice daily). In parallel, an individual healing attempt was carried out by treating one patient with an NRAS-mutated tumor. Results: Encorafenib was able to enhance the inhibitory effect on cell growth of binimetinib only in the cell line SKMel147 in vitro. It failed to enhance the apoptotic effect found in two other NRAS-mutated cell lines. Encorafenib led to a hyperactivation of ERK which could be reduced with the combinational treatment. In two of the three patient-derived tissue slice culture models of NRAS-mutant melanomas, a slight tendency of a combinatorial effect was seen which was not significant. Encorafenib showed a slight induction of the ER stress genes ATF4, CHOP, and NUPR1. The combinational treatment was able to enhance this effect, but not significantly. In the mouse model, the combination therapy of encorafenib with binimetinib resulted in reduced tumor growth compared to the control and encorafenib groups; however, the best effect in terms of tumor growth inhibition was measured in the binimetinib therapy group. The therapy showed no effect in an individual healing attempt for a patient suffering from metastatic, therapy-refractory NRAS-mutated melanoma. Conclusion: In in vitro and ex vivo settings, the combination therapy was observed to elicit a response; however, it did not amplify the efficacy observed with binimetinib alone, whereas in a patient, the combinational treatment remained ineffective. The preclinical in vivo data showed no increased combinatorial effect. However, the in vivo effect of binimetinib as monotherapy was unexpectedly high in the tested regimen. Nevertheless, binimetinib proved to be advantageous in the treatment of melanoma in vivo and led to high rates of apoptosis in vitro; hence, it still seems to be a good base for combination with other substances in the treatment of patients with NRAS-mutant melanoma.

Funder

Pierre Fabre

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3