Inhibition of Enhancer of Zeste Homolog 2 Induces Blast Differentiation, Impairs Engraftment and Prolongs Survival in Murine Models of Acute Myeloid Leukemia

Author:

Fobare Sydney12,Elgamal Ola A.2,Wunderlich Mark3,Stahl Emily4,Mehmood Abeera4ORCID,Furby Casie2,Lerma James R.2,Sesterhenn Thomas M.2,Pan Jianmin567,Rai Jayesh567,Johnstone Megan E.2,Abdul-Aziz Amina2,Johnson Mariah L.4,Rai Shesh N.567ORCID,Byrd John C.2,Hertlein Erin2

Affiliation:

1. Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA

2. Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45229, USA

3. Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA

4. Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA

5. Division of Biostatistics and Bioinformatics, Department of Environmental Health and Public Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA

6. The Cancer Data Science Center, Department of Environmental Health and Public Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA

7. Biostatistics and Informatics Shared Resource, University of Cincinnati Cancer Center, Cincinnati, OH 45267, USA

Abstract

Background: Acute myeloid leukemia (AML) is the malignant proliferation of immature myeloid cells characterized by a block in differentiation. As such, novel therapeutic strategies to promote the differentiation of immature myeloid cells have been successful in AML, although these agents are targeted to a specific mutation that is only present in a subset of AML patients. In the current study, we show that targeting the epigenetic modifier enhancer of zeste homolog 2 (EZH2) can induce the differentiation of immature blast cells into a more mature myeloid phenotype and promote survival in AML murine models. Methods: The EZH2 inhibitor EPZ011989 (EPZ) was studied in AML cell lines, primary in AML cells and normal CD34+ stem cells. A pharmacodynamic assessment of H3K27me3; studies of differentiation, cell growth, and colony formation; and in vivo therapeutic studies including the influence on primary AML cell engraftment were also conducted. Results: EPZ inhibited H3K27me3 in AML cell lines and primary AML samples in vitro. EZH2 inhibition reduced colony formation in multiple AML cell lines and primary AML samples, while exhibiting no effect on colony formation in normal CD34+ stem cells. In AML cells, EPZ promoted phenotypic evidence of differentiation. Finally, the pretreatment of primary AML cells with EPZ significantly delayed engraftment and prolonged the overall survival when engrafted into immunodeficient mice. Conclusions: Despite evidence that EZH2 silencing in MDS/MPN can promote AML pathogenesis, our data demonstrate that the therapeutic inhibition of EZH2 in established AML has the potential to improve survival.

Funder

NCI

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3