Biological Functions and Therapeutic Potential of NAD+ Metabolism in Gynecological Cancers

Author:

Myong Subin1,Nguyen Anh Quynh2ORCID,Challa Sridevi12

Affiliation:

1. The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA

2. Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA

Abstract

Nicotinamide adenine dinucleotide (NAD+) is an important cofactor for both metabolic and signaling pathways, with the dysregulation of NAD+ levels acting as a driver for diseases such as neurodegeneration, cancers, and metabolic diseases. NAD+ plays an essential role in regulating the growth and progression of cancers by controlling important cellular processes including metabolism, transcription, and translation. NAD+ regulates several metabolic pathways such as glycolysis, the citric acid (TCA) cycle, oxidative phosphorylation, and fatty acid oxidation by acting as a cofactor for redox reactions. Additionally, NAD+ acts as a cofactor for ADP-ribosyl transferases and sirtuins, as well as regulating cellular ADP-ribosylation and deacetylation levels, respectively. The cleavage of NAD+ by CD38—an NAD+ hydrolase expressed on immune cells—produces the immunosuppressive metabolite adenosine. As a result, metabolizing and maintaining NAD+ levels remain crucial for the function of various cells found in the tumor microenvironment, hence its critical role in tissue homeostasis. The NAD+ levels in cells are maintained by a balance between NAD+ biosynthesis and consumption, with synthesis being controlled by the Preiss–Handler, de novo, and NAD+ salvage pathways. The primary source of NAD+ synthesis in a variety of cell types is directed by the expression of the enzymes central to the three biosynthesis pathways. In this review, we describe the role of NAD+ metabolism and its synthesizing and consuming enzymes’ control of cancer cell growth and immune responses in gynecologic cancers. Additionally, we review the ongoing efforts to therapeutically target the enzymes critical for NAD+ homeostasis in gynecologic cancers.

Funder

NCI/SPORE

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3