Nanoparticles and Nanomaterials-Based Recent Approaches in Upgraded Targeting and Management of Cancer: A Review

Author:

Ojha Anupama,Jaiswal Sonali,Bharti Priyanka,Mishra Sarad Kumar

Abstract

Along with the extensive improvement in tumor biology research and different therapeutic developments, cancer remains a dominant and deadly disease. Tumor heterogeneity, systemic toxicities, and drug resistance are major hurdles in cancer therapy. Chemotherapy, radiotherapy, phototherapy, and surgical therapy are some prominent areas of cancer treatment. During chemotherapy for cancer, chemotherapeutic agents are distributed all over the body and also damage normal cells. With advancements in nanotechnology, nanoparticles utilized in all major areas of cancer therapy offer the probability to advance drug solubility, and stability, extend drug half-lives in plasma, reduce off-target effects, and quintessence drugs at a target site. The present review compiles the use of different types of nanoparticles in frequently and recently applied therapeutics of cancer therapy. A recent area of cancer treatment includes cancer stem cell therapy, DNA/RNA-based immunomodulation therapy, alteration of the microenvironment, and cell membrane-mediated biomimetic approach. Biocompatibility and bioaccumulation of nanoparticles is the major impediment in nano-based therapy. More research is required to develop the next generation of nanotherapeutics with the incorporation of new molecular entities, such as kinase inhibitors, siRNA, mRNA, and gene editing. We assume that nanotherapeutics will dramatically improve patient survival, move the model of cancer treatment, and develop certainty in the foreseeable future.

Funder

University Grant Commission

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference135 articles.

1. Nanoparticles for Cancer Therapy: Current Progress and Challenges;Gavas;Nanoscale Res. Lett.,2021

2. Nanotechnology in cancer therapy;Aslan;J. Drug Target.,2013

3. Nanotherapy for Cancer: Targeting and Multifunctionality in the Future of Cancer Therapies;Ediriwickrema;ACS Biomater. Sci. Eng.,2015

4. Multifunctional gold nanoshells on silica nanorattles: A platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity;Liu;Angew. Chem.,2011

5. Targeted treatment of cancer with nanotherapeutics based on mesoporous silica nanoparticles;Knezevic;Chem. Plus Chem.,2015

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3