Molecular Atlas of HER2+ Breast Cancer Cells Treated with Endogenous Ligands: Temporal Insights into Mechanisms of Trastuzumab Resistance

Author:

Mukund Kavitha1,Alva-Ornelas Jackelyn A.2,Maddox Adam L.3ORCID,Murali Divya1,Veraksa Darya1ORCID,Saftics Andras3ORCID,Tomsic Jerneja2ORCID,Frankhouser David2ORCID,Razo Meagan2,Jovanovic-Talisman Tijana3ORCID,Seewaldt Victoria L.2,Subramaniam Shankar1

Affiliation:

1. Department of Bioengineering, UC San Diego, Gilman Drive, La Jolla, CA 92093, USA

2. City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA

3. Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA

Abstract

Trastuzumab therapy in HER2+ breast cancer patients has mixed success owing to acquired resistance to therapy. A detailed understanding of downstream molecular cascades resulting from trastuzumab resistance is yet to emerge. In this study, we investigate the cellular mechanisms underlying acquired resistance using trastuzumab-sensitive and -resistant cancer cells (BT474 and BT474R) treated with endogenous ligands EGF and HRG across time. We probe early receptor organization through microscopy and signaling events through multiomics measurements and assess the bioenergetic state through mitochondrial measurements. Integrative analyses of our measurements reveal significant alterations in EGF-treated BT474 HER2 membrane dynamics and robust downstream activation of PI3K/AKT/mTORC1 signaling. EGF-treated BT474R shows a sustained interferon-independent activation of the IRF1/STAT1 cascade, potentially contributing to trastuzumab resistance. Both cell lines exhibit temporally divergent metabolic demands and HIF1A-mediated stress responses. BT474R demonstrates inherently increased mitochondrial activity. HRG treatment in BT474R leads to a pronounced reduction in AR expression, affecting downstream lipid metabolism with implications for treatment response. Our results provide novel insights into mechanistic changes underlying ligand treatment in BT474 and BT474R and emphasize the pivotal role of endogenous ligands. These results can serve as a framework for furthering the understanding of trastuzumab resistance, with therapeutic implications for women with acquired resistance.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3