Novel Drug Candidate Prediction for Intrahepatic Cholangiocarcinoma via Hub Gene Network Analysis and Connectivity Mapping

Author:

Xiao YaoORCID,Zhang Baoluhe,Cloyd Jordan M.,Alaimo LauraORCID,Xu Gang,Du Shunda,Mao Yilei,Pawlik Timothy M.ORCID

Abstract

Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy, and there is a need for effective systemic therapies. Gene expression profile-based analyses may allow for efficient screening of potential drug candidates to serve as novel therapeutics for patients with ICC. The RNA expression profile of ICC and normal biliary epithelial cells were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Function annotation and enrichment pathway analyses of the differentially expressed genes (DEGs) were finished using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A weighted gene co-expression network (WGCN) was constructed by WGCN analysis (WGCNA). Key genes from the DEGs and co-expression gene modules were analyzed to generate a protein–protein interaction (PPI) network. The association between the top 10 screened hub genes and the overall and disease-free survival of ICC patients was examined. The Connectivity Map (cMap) analysis was performed to identify possible drugs for ICC using hub genes. A total of 151 key genes were selected from the overlapping genes of 1287 GSE-DEGs, 8183 TCGA-DEGs and 1226 genes in the mixed modules. A total of 10 hub genes of interest (CTNNB1, SPP1, COL1A2, COL3A1, SMAD3, SRC, VCAN, PKLR, GART, MRPS5) were found analyzing protein–protein interaction. Using the cMap, candidate drugs screened with potential efficacy for ICC included three tyrosine kinase inhibitors (dasatinib, NVP-BHG712, tivantinib), two cannabinoid receptor agonists (palmitoylethanolamide, arachidonamide), two antibiotics (moxifloxacin, amoxicillin), one estrogen receptor agonist (levonorgestrel), one serine/threonine protein kinase inhibitor (MK-2206) and other small molecules. Key genes from network and PPI analysis allowed us to identify potential drugs for ICC. The identification of novel gene expression profiles and related drug screening may accelerate the identification of potential novel drug therapies for ICC.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3