NK3.3-Derived Extracellular Vesicles Penetrate and Selectively Kill Treatment-Resistant Tumor Cells

Author:

McCune Allyson1,Kornbluth Jacki12

Affiliation:

1. Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA

2. St. Louis VA Medical Center, St. Louis, MO 63106, USA

Abstract

Cancer treatments often become ineffective due to the development of tumor resistance, leading to metastasis and relapse. Treatments may also fail because of their inability to access cells deep within the tumor tissue. When this occurs, new therapeutic agents are needed. We previously reported that NK3.3EVs, extracellular vesicles (EVs) derived from the normal human natural killer (NK) cell line, NK3.3, have strong cytotoxic activity against leukemia and breast cancer cell lines, without harming normal cells. Here, we used a three-dimensional (3D) MCF7 breast cancer mammosphere model to reproduce a more physiological environment that NK3.3EVs would encounter in vivo. NK3.3EVs penetrated MCF7 mammospheres, inducing death by apoptosis. We generated an imatinib-resistant K562 chronic myeloid leukemia (CML) cell line to investigate whether NK3.3EVs were able to kill tumor cells resistant to front-line chemotherapy. NK3.3EVs were even more cytotoxic to imatinib-resistant cells than parental cells, inducing apoptosis via caspase-3/-7 activation. The small population of cancer stem cells (CSCs) within tumors also contributes to therapeutic resistance. NK3.3EVs reduced the CSC-like CD34+/CD38− subpopulation in imatinib-resistant and parental K562 cultures and decreased CSC-associated expression of tumor-promoting genes. Our results provide strong evidence that NK3.3EVs may be a potential new immunotherapeutic agent for difficult-to-treat cancers.

Funder

U.S. Department of Veterans Affairs

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3