Radiomodulating Properties of Superparamagnetic Iron Oxide Nanoparticle (SPION) Agent Ferumoxytol on Human Monocytes: Implications for MRI-Guided Liver Radiotherapy

Author:

Shurin Michael R.1ORCID,Kirichenko Vladimir A.2,Shurin Galina V.1,Lee Danny2ORCID,Crane Christopher3,Kirichenko Alexander V.2ORCID

Affiliation:

1. Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA

2. Department of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15224, USA

3. Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA

Abstract

Superparamagnetic iron oxide nanoparticles (SPION) have attracted great attention not only for therapeutic applications but also as an alternative magnetic resonance imaging (MRI) contrast agent that helps visualize liver tumors during MRI-guided stereotactic body radiotherapy (SBRT). SPION can provide functional imaging of liver parenchyma based upon its uptake by the hepatic resident macrophages or Kupffer cells with a relative enhancement of malignant tumors that lack Kupffer cells. However, the radiomodulating properties of SPION on liver macrophages are not known. Utilizing human monocytic THP-1 undifferentiated and differentiated cells, we characterized the effect of ferumoxytol (Feraheme®), a carbohydrate-coated ultrasmall SPION agent at clinically relevant concentration and therapeutically relevant doses of gamma radiation on cultured cells in vitro. We showed that ferumoxytol affected both monocytes and macrophages, increased the resistance of monocytes to radiation-induced cell death and inhibition of cell activity, and supported the anti-inflammatory phenotype of human macrophages under radiation. Its effect on human cells depended on the duration of SPION uptake and was radiation dose-dependent. The results of this pilot study support a strong mechanism-based optimization of SPION-enhanced MRI-guided liver SBRT for primary and metastatic liver tumors, especially in patients with liver cirrhosis awaiting a liver transplant.

Funder

Elekta Research Grant, Department of Pathology, University of Pittsburgh Medical Center

Allegheny-Singer Research Institute

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3