miRNA on the Battlefield of Cancer: Significance in Cancer Stem Cells, WNT Pathway, and Treatment

Author:

Bhagtaney Lekha1,Dharmarajan Arun234,Warrier Sudha156

Affiliation:

1. Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India

2. Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India

3. School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, WA 6009, Australia

4. Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia

5. Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India

6. Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India

Abstract

Carcinogenesis is a complex process characterized by intricate changes in organ histology, biochemistry, epigenetics, and genetics. Within this intricate landscape, cancer stem cells (CSCs) have emerged as distinct cell types possessing unique attributes that significantly contribute to the pathogenesis of cancer. The WNT signaling pathway plays a critical role in maintaining somatic stem cell pluripotency. However, in cancer, overexpression of WNT mediators enhances the activity of β-catenin, resulting in phenomena such as recurrence and unfavorable survival outcomes. Notably, CSCs exhibit heightened WNT signaling compared to bulk cancer cells, providing intriguing insights into their functional characteristics. MicroRNAs (miRNAs), as post-transcriptional gene expression regulators, modulate various physiological processes in numerous diseases including cancer. Upregulation or downregulation of miRNAs can affect the production of pro-oncogenic or anti-oncogenic proteins, influencing cellular processes that maintain tissue homeostasis and promote either apoptosis or differentiation, even in cancer cells. In order to understand the dysregulation of miRNAs, it is essential to examine miRNA biogenesis and any possible alterations at each step. The potential of a miRNA as a biomarker in prognosis, diagnosis, and detection is being assessed using technologies such as next-generation sequencing. Extensive research has explored miRNA expression profiles in cancer, leading to their utilization as diagnostic tools and the development of personalized and targeted cancer therapies. This review delves into the role of miRNAs in carcinogenesis in relation to the WNT signaling pathway along with their potential as druggable compounds.

Funder

Department of Biotechnology

Department of Health Research, Ministry of Health, and Family Welfare

Science and Engineering Research Board, Department of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3