Enhancing Preoperative Outcome Prediction: A Comparative Retrospective Case–Control Study on Machine Learning versus the International Esodata Study Group Risk Model for Predicting 90-Day Mortality in Oncologic Esophagectomy

Author:

Winter Axel1ORCID,van de Water Robin P.2ORCID,Pfitzner Bjarne2ORCID,Ibach Marius1ORCID,Riepe Christoph1ORCID,Ahlborn Robert3ORCID,Faraj Lara4,Krenzien Felix15ORCID,Dobrindt Eva M.1,Raakow Jonas1ORCID,Sauer Igor M.1ORCID,Arnrich Bert2ORCID,Beyer Katharina6,Denecke Christian1,Pratschke Johann1,Maurer Max M.15

Affiliation:

1. Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany

2. Hasso Plattner Institute, University of Potsdam, 14476 Potsdam, Germany

3. Department of Information Technology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany

4. Einstein Center for Neurosciences Berlin, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany

5. BIH Charité (Digital) Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Charitéplatz 1, 10117 Berlin, Germany

6. Department of General and Abdominal Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany

Abstract

Risk prediction prior to oncologic esophagectomy is crucial for assisting surgeons and patients in their joint informed decision making. Recently, a new risk prediction model for 90-day mortality after esophagectomy using the International Esodata Study Group (IESG) database was proposed, allowing for the preoperative assignment of patients into different risk categories. However, given the non-linear dependencies between patient- and tumor-related risk factors contributing to cumulative surgical risk, machine learning (ML) may evolve as a novel and more integrated approach for mortality prediction. We evaluated the IESG risk model and compared its performance to ML models. Multiple classifiers were trained and validated on 552 patients from two independent centers undergoing oncologic esophagectomies. The discrimination performance of each model was assessed utilizing the area under the receiver operating characteristics curve (AUROC), the area under the precision–recall curve (AUPRC), and the Matthews correlation coefficient (MCC). The 90-day mortality rate was 5.8%. We found that IESG categorization allowed for adequate group-based risk prediction. However, ML models provided better discrimination performance, reaching superior AUROCs (0.64 [0.63–0.65] vs. 0.44 [0.32–0.56]), AUPRCs (0.25 [0.24–0.27] vs. 0.11 [0.05–0.21]), and MCCs (0.27 ([0.25–0.28] vs. 0.15 [0.03–0.27]). Conclusively, ML shows promising potential to identify patients at risk prior to surgery, surpassing conventional statistics. Still, larger datasets are needed to achieve higher discrimination performances for large-scale clinical implementation in the future.

Funder

BIH clinician scientist program

CASSANDRA

Einstein Center for Neurosciences

Publisher

MDPI AG

Reference47 articles.

1. Oesophageal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up;Alsina;Ann. Oncol.,2022

2. (2024, August 08). Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): Diagnostik und Therapie der Plattenepithelkarzinome und Adenokarzinome des Ösophagus; Langversion 3. 1, 2022, AWMF—Registernummer: 021/023OL. Available online: https://www.leitlinienprogrammonkologie.de/leitlinien/oesophaguskarzinom/.

3. GBD 2017 Oesophageal Cancer Collaborators (2020). The global, regional, and national burden of oesophageal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol., 5, 582–597.

4. Risk Prediction Model of 90-Day Mortality After Esophagectomy for Cancer;Boulate;JAMA Surg.,2021

5. Failure-to-rescue in patients undergoing surgery for esophageal or gastric cancer;Busweiler;Eur. J. Surg. Oncol.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3