Cholesterol Metabolism in Pancreatic Cancer

Author:

Rebelo Artur1ORCID,Kleeff Jörg1ORCID,Sunami Yoshiaki1ORCID

Affiliation:

1. Department of Visceral, Vascular and Endocrine Surgery, University Medical Center Halle, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany

Abstract

Pancreatic cancer’s substantial impact on cancer-related mortality, responsible for 8% of cancer deaths and ranking fourth in the US, persists despite advancements, with a five-year relative survival rate of only 11%. Forecasts predict a 70% surge in new cases and a 72% increase in global pancreatic cancer-related deaths by 2040. This review explores the intrinsic metabolic reprogramming of pancreatic cancer, focusing on the mevalonate pathway, including cholesterol biosynthesis, transportation, targeting strategies, and clinical studies. The mevalonate pathway, central to cellular metabolism, significantly shapes pancreatic cancer progression. Acetyl coenzyme A (Acetyl-CoA) serves a dual role in fatty acid and cholesterol biosynthesis, fueling acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) development. Enzymes, including acetoacetyl-CoA thiolase, 3-hydroxy-3methylglutaryl-CoA (HMG-CoA) synthase, and HMG-CoA reductase, are key enzymes in pancreatic cancer. Inhibiting HMG-CoA reductase, e.g., by using statins, shows promise in delaying PanIN progression and impeding pancreatic cancer. Dysregulation of cholesterol modification, uptake, and transport significantly impacts tumor progression, with Sterol O-acyltransferase 1 (SOAT1) driving cholesterol ester (CE) accumulation and disrupted low-density lipoprotein receptor (LDLR) expression contributing to cancer recurrence. Apolipoprotein E (ApoE) expression in tumor stroma influences immune suppression. Clinical trials targeting cholesterol metabolism, including statins and SOAT1 inhibitors, exhibit potential anti-tumor effects, and combination therapies enhance efficacy. This review provides insights into cholesterol metabolism’s convergence with pancreatic cancer, shedding light on therapeutic avenues and ongoing clinical investigations.

Funder

Advanced Clinician Scientist Program of Medical Faculty of the Martin‑Luther University Halle‑Wittenberg, Halle (Saale), Germany

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference78 articles.

1. Cancer statistics, 2023;Siegel;CA Cancer J. Clin.,2023

2. (2023, August 01). International Cancer Research Association. Available online: https://gco.iarc.fr/tomorrow/en.

3. Hallmarks of Cancer: New Dimensions;Hanahan;Cancer Discov.,2022

4. Sunami, Y., Rebelo, A., and Kleeff, J. (2017). Lipid Metabolism and Lipid Droplets in Pancreatic Cancer and Stellate Cells. Cancers, 10.

5. Lipid Metabolic Reprogramming Extends beyond Histologic Tumor Demarcations in Operable Human Pancreatic Cancer;Pirhonen;Cancer Res.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3