SPOCK1 Overexpression Suggests Poor Prognosis of Ovarian Cancer

Author:

Váncza Lóránd1ORCID,Horváth Anna1,Seungyeon Lee1ORCID,Rókusz András1,Dezső Katalin1,Reszegi Andrea2ORCID,Petővári Gábor1,Götte Martin3ORCID,Kovalszky Ilona1ORCID,Baghy Kornélia1

Affiliation:

1. Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary

2. Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1085 Budapest, Hungary

3. Department of Gynecology and Obstetrics, University Hospital Münster, 48149 Münster, Germany

Abstract

Purpose: Sparc/osteonectin, cwcv, and kazal-like domains proteoglycan 1 (SPOCK1) has been found in a variety of malignant tumors and is associated with a poor prognosis. We aimed to explore the role of SPOCK1 in ovarian cancer. Methods: Ovarian cancer cell lines SKOV3 and SW626 were transfected with SPOCK1 overexpressing or empty vector using electroporation. Cells were studied by immunostaining and an automated Western blotting system. BrdU uptake and wound healing assays assessed cell proliferation and migration. SPOCK1 expression in human ovarian cancer tissues and in blood samples were studied by immunostaining and ELISA. Survival of patients with tumors exhibiting low and high SPOCK1 expression was analyzed using online tools. Results: Both transfected cell lines synthesized different SPOCK1 variants; SKOV3 cells also secreted the proteoglycan. SPOCK1 overexpression stimulated DNA synthesis and cell migration involving p21CIP1. Ovarian cancer patients had increased SPOCK1 serum levels compared to healthy controls. Tumor cells of tissues also displayed abundant SPOCK1. Moreover, SPOCK1 levels were higher in untreated ovarian cancer serum and tissue samples and lower in recipients of chemotherapy. According to in silico analyses, high SPOCK1 expression was correlated with shorter survival. Conclusion: Our findings suggest SPOCK1 may be a viable anti-tumor therapeutic target and could be used for monitoring ovarian cancer.

Funder

Hungarian Scientific Research Fund

WiRe—Women in Research fellowship 2020

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3