The Expression and Role Analysis of Methylation-Regulated Differentially Expressed Gene UBE2C in Pan-Cancer, Especially for HGSOC

Author:

Li JiajiaORCID,Sun Yating,Zhi Xiuling,Li Qin,Yao Liangqing,Chen Mo

Abstract

High-grade serous ovarian cancer (HGSOC) is the most fatal gynecological malignant tumor. DNA methylation is associated with the occurrence and development of a variety of tumor types, including HGSOC. However, the signatures regarding DNA methylation changes for HGSOC diagnosis and prognosis are less explored. Here, we screened differentially methylated genes and differentially expressed genes in HGSOC through the GEO database. We identified that UBE2C was hypomethylation and overexpression in ovarian cancer, which was associated with more advanced cancer stages and poor prognoses. Additionally, the pan-cancer analysis showed that UBE2C was overexpressed and hypomethylation in almost all cancer types and was related to poor prognoses for various cancers. Next, we established a risk or prognosis model related to UBE2C methylation sites and screened out the three sites (cg03969725, cg02838589, and cg00242976). Furthermore, we experimentally validated the overexpression of UBE2C in HGSOC clinical samples and ovarian cell lines using quantitative real-time PCR, Western blot, and immunohistochemistry. Importantly, we discovered that ovarian cancer cell lines had lower DNA methylation levels of UBE2C than IOSE-80 cells (normal ovarian epithelial cell line) by bisulfite sequencing PCR. Consistently, treatment with 5-Azacytidine (a methylation inhibitor) was able to restore the expression of UBE2C. Taken together, our study may help us to understand the underlying molecular mechanism of UBE2C in pan-cancer tumorigenesis; it may be a useful biomarker for diagnosis, treatment, and monitoring, not only of ovarian cancer but a variety of cancers.

Funder

National Natural Science Foundation of China

Shanghai Municipal Health and Family Planning Commission

Publisher

MDPI AG

Subject

Cancer Research,Oncology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3