Kynureninase Upregulation Is a Prominent Feature of NFR2-Activated Cancers and Is Associated with Tumor Immunosuppression and Poor Prognosis

Author:

León-Letelier Ricardo A.1ORCID,Abdel Sater Ali H.1ORCID,Chen Yihui1ORCID,Park Soyoung1,Wu Ranran1ORCID,Irajizad Ehsan2,Dennison Jennifer B.1,Katayama Hiroyuki1ORCID,Vykoukal Jody V.1,Hanash Samir1,Ostrin Edwin J.3ORCID,Fahrmann Johannes F.1

Affiliation:

1. Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

2. Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

3. Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

Abstract

The nuclear factor erythroid 2-related factor 2 (NRF2) pathway is frequently activated in various cancer types. Aberrant activation of NRF2 in cancer is attributed to gain-of-function mutations in the NRF2-encoding gene NFE2L2 or a loss of function of its suppressor, Kelch-like ECH-associated protein 1 (KEAP1). NRF2 activation exerts pro-tumoral effects in part by altering cancer cell metabolism. Previously, we reported a novel mechanism of NRF2 tumoral immune suppression through the selective upregulation of the tryptophan-metabolizing enzyme kynureninase (KYNU) in lung adenocarcinoma. In the current study, we explored the relevance of NRF2-mediated KYNU upregulation across multiple cancer types. Specifically, using a gene expression dataset for 9801 tumors representing 32 cancer types from The Cancer Genome Atlas (TCGA), we demonstrated that elevated KYNU parallels increased gene-based signatures of NRF2-activation and that elevated tumoral KYNU mRNA expression is strongly associated with an immunosuppressive tumor microenvironment, marked by high expression of gene-based signatures of Tregs as well as the immune checkpoint blockade-related genes CD274 (PDL-1), PDCD1 (PD-1), and CTLA4, regardless of the cancer type. Cox proportional hazard models further revealed that increased tumoral KYNU gene expression was prognostic for poor overall survival in several cancer types, including thymoma, acute myeloid leukemia, low-grade glioma, kidney renal papillary cell carcinoma, stomach adenocarcinoma, and pancreatic ductal adenocarcinoma (PDAC). Using PDAC as a model system, we confirmed that siRNA-mediated knockdown of NRF2 reduced KYNU mRNA expression, whereas activation of NFE2L2 (the coding gene for NRF2) through either small-molecule agonists or siRNA-mediated knockdown of KEAP1 upregulated KYNU in PDAC cells. Metabolomic analyses of the conditioned medium from PDAC cell lines revealed elevated levels of KYNU-derived anthranilate, confirming that KYNU was enzymatically functional. Collectively, our study highlights the activation of the NRF2–KYNU axis as a multi-cancer phenomenon and supports the relevance of tumoral KYNU as a marker of tumor immunosuppression and as a prognostic marker for poor overall survival.

Funder

MD Anderson Moonshot project

The American Lung Association

Lyda Hill Foundation

MDACC histology core

The University of Texas MD Anderson Cancer Center Duncan Family Institute for Cancer Prevention and Risk Assessment

University of Texas MD Anderson Cancer Center Moonshot Program

American Lung Association Lung Cancer Discovery Award

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3