HER2-Targeted Tyrosine Kinase Inhibitors Cause Therapy-Induced-Senescence in Breast Cancer Cells

Author:

McDermott Martina S.J.,Conlon Neil,Browne Brigid C.,Szabo Adam,Synnott Naoise C.,O’Brien Neil A.,Duffy Michael J.,Crown John,O’Donovan Norma

Abstract

Prolonged treatment of HER2 positive breast cancer cells with tyrosine kinase inhibitors (TKIs) leads to the emergence of acquired resistance. However, the effects of continuous TKI exposure on cell fate, and the steps leading to the acquisition of a resistant phenotype are poorly understood. To explore this, we exposed five HER2 positive cells lines to HER2 targeted therapies for periods of up to 4 weeks and examined senescence associated β-galactosidase (SA-β-gal) activity together with additional markers of senescence. We found that lapatinib treatment resulted in phenotypic alterations consistent with a senescent phenotype and strong SA-β-gal activity in HER2-positive cell lines. Lapatinib-induced senescence was associated with elevated levels of p15 and p27 but was not dependent on the expression of p16 or p21. Restoring wild type p53 activity either by transfection or by treatment with APR-246, a molecule which reactivates mutant p53, blocked lapatinib-induced senescence and caused increased cell death. In contrast to lapatinib, SA-β-gal activity was not induced by exposing the cells to trastuzumab as a single agent but co-administration of lapatinib and trastuzumab induced senescence, as did treatment of the cells with the irreversible HER2 TKIs neratinib and afatinib. Neratinib- and afatinib-induced senescence was not reversed by removing the drug whereas lapatinib-induced senescence was reversible. In summary, therapy-induced senescence represents a novel mechanism of action of HER2 targeting agents and may be a potential pathway for the emergence of resistance.

Funder

Science Foundation Ireland

Irish Cancer Society

Health Research Board

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3