Identification of Novel Diagnostic and Prognostic Gene Signature Biomarkers for Breast Cancer Using Artificial Intelligence and Machine Learning Assisted Transcriptomics Analysis

Author:

Mirza Zeenat12ORCID,Ansari Md Shahid3ORCID,Iqbal Md Shahid4ORCID,Ahmad Nesar4ORCID,Alganmi Nofe567ORCID,Banjar Haneen567ORCID,Al-Qahtani Mohammed H.26,Karim Sajjad26ORCID

Affiliation:

1. King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia

3. Department of Clinical Data Analytics, Max Super Speciality Hospital, Saket, New Delhi 110017, India

4. Department of Statistics and Computer Applications, Tilka Manjhi Bhagalpur University, Bhagalpur 812007, India

5. Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

6. Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia

7. Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

Background: Breast cancer (BC) is one of the most common female cancers. Clinical and histopathological information is collectively used for diagnosis, but is often not precise. We applied machine learning (ML) methods to identify the valuable gene signature model based on differentially expressed genes (DEGs) for BC diagnosis and prognosis. Methods: A cohort of 701 samples from 11 GEO BC microarray datasets was used for the identification of significant DEGs. Seven ML methods, including RFECV-LR, RFECV-SVM, LR-L1, SVC-L1, RF, and Extra-Trees were applied for gene reduction and the construction of a diagnostic model for cancer classification. Kaplan–Meier survival analysis was performed for prognostic signature construction. The potential biomarkers were confirmed via qRT-PCR and validated by another set of ML methods including GBDT, XGBoost, AdaBoost, KNN, and MLP. Results: We identified 355 DEGs and predicted BC-associated pathways, including kinetochore metaphase signaling, PTEN, senescence, and phagosome-formation pathways. A hub of 28 DEGs and a novel diagnostic nine-gene signature (COL10A, S100P, ADAMTS5, WISP1, COMP, CXCL10, LYVE1, COL11A1, and INHBA) were identified using stringent filter conditions. Similarly, a novel prognostic model consisting of eight-gene signatures (CCNE2, NUSAP1, TPX2, S100P, ITM2A, LIFR, TNXA, and ZBTB16) was also identified using disease-free survival and overall survival analysis. Gene signatures were validated by another set of ML methods. Finally, qRT-PCR results confirmed the expression of the identified gene signatures in BC. Conclusion: The ML approach helped construct novel diagnostic and prognostic models based on the expression profiling of BC. The identified nine-gene signature and eight-gene signatures showed excellent potential in BC diagnosis and prognosis, respectively.

Funder

Deputyship for Research and Innovation, Ministry of Education and King Abdulaziz University

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3