Destruxin B Suppresses Drug-Resistant Colon Tumorigenesis and Stemness Is Associated with the Upregulation of miR-214 and Downregulation of mTOR/β-Catenin Pathway

Author:

Wu Szu-Yuan,Huang Yan-Jiun,Tzeng Yew-Min,Huang Chi-Ying,Hsiao Michael,Wu Alexander,Huang Tse-Hung

Abstract

Background: Drug resistance represents a major challenge for treating patients with colon cancer. Accumulating evidence suggests that Insulin-like growth factor (IGF)-associated signaling promotes colon tumorigenesis and cancer stemness. Therefore, the identification of agents, which can disrupt cancer stemness signaling, may provide improved therapeutic efficacy. Methods: Mimicking the tumor microenvironment, we treated colon cancer cells with exogenous IGF1. The increased stemness of IGF1-cultured cells was determined by ALDH1 activity, side-population, tumor sphere formation assays. Destruxin B (DB) was evaluated for its anti-tumorigenic and stemness properties using cellular viability, colony-formation tests. The mimic and inhibitor of miR-214 were used to treat colon cancer cells to show its functional association to DB treatment. In vivo mouse models were used to evaluate DB’s ability to suppress colon tumor-initiating ability and growth inhibitory function. Results: IGF1-cultured colon cancer cells showed a significant increase in 5-FU resistance and enhanced stemness properties, including an increased percentage of ALDH1+, side-population cells, tumor sphere generation in vitro, and increased tumor initiation in vivo. In support, using public databases showed that increased IGF1 expression was significantly associated with a poorer prognosis in patients with colon cancer. DB, a hexadepsipeptide mycotoxin, was able to suppress colon tumorigenic phenotypes, including colony and sphere formation. The sequential treatment of DB, followed by 5-FU, synergistically inhibited the viability of colon cancer cells. In vivo studies showed that DB suppressed the tumorigenesis by 5-FU resistant colon cells, and in a greater degree when combined with 5-FU. Mechanistically, DB treatment was associated with decreased the mammalian target of rapamycin (mTOR) and β-catenin expression and an increased miR-214 level. Conclusion: We provided evidence of DB as a potential therapeutic agent for overcoming 5-FU resistance induced by IGF1, and suppressing cancer stem-like properties in association with miR-214 regulation. Further investigation is warranted for its translation to clinical application.

Funder

The Ministry of Science and Technology

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3