Molecular Characterization and Treatment Approaches for Pediatric H3 K27-Altered Diffuse Midline Glioma: Integrated Systematic Review of Individual Clinical Trial Participant Data

Author:

Damodharan Sudarshawn1ORCID,Abbott Alexandra2,Kellar Kaitlyn2,Zhao Qianqian3,Dey Mahua2ORCID

Affiliation:

1. Department of Pediatrics, Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, School of Medicine & Public Health, University of Wisconsin, Madison, WI 53792, USA

2. Department of Neurosurgery, School of Medicine & Public Health, University of Wisconsin, UW Carbone Cancer Center, Madison, WI 53792, USA

3. Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA

Abstract

Diffuse midline glioma (DMG), H3 K27-altered are highly aggressive, incurable central nervous system (CNS) tumors. The current standard palliative treatment is radiotherapy, with most children succumbing to the disease in less than one year from the time of diagnosis. Over the past decade, there have been significant advancements in our understanding of these heterogeneous tumors at the molecular level. As a result, most of the newer clinical trials offered utilize more targeted approaches with information derived from the tumor biopsy. In this systematic review, we used individual participant data from seven recent clinical trials published over the past five years that met our inclusion and exclusion criteria to analyze factors that influence overall survival (OS). We found that the most prominent genetic alterations H3.3 (H3F3A) and TP53 were associated with worse OS and that ACVR had a protective effect. In addition, re-irradiation was the only statistically significant treatment modality that showed any survival benefit. Our findings highlight some important characteristics of DMG, H3 K27-altered and their effects on OS along with the importance of continuing to review clinical trial data to improve our therapies for these fatal tumors.

Funder

NIH

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3