All-Trans Retinoic Acid Stimulates Viral Mimicry, Interferon Responses and Antigen Presentation in Breast-Cancer Cells

Author:

Bolis Marco,Paroni Gabriela,Fratelli MaddalenaORCID,Vallerga Arianna,Guarrera LucaORCID,Zanetti Adriana,Kurosaki MamiORCID,Garattini Silvio Ken,Gianni’ Maurizio,Lupi MonicaORCID,Pattini Linda,Barzago Maria Monica,Terao MinekoORCID,Garattini EnricoORCID

Abstract

All-trans retinoic acid (ATRA), a recognized differentiating agent, has significant potential in the personalized/stratified treatment of breast cancer. The present study reports on the molecular mechanisms underlying the anti-tumor activity of ATRA in breast cancer. The work is based on transcriptomic experiments performed on ATRA-treated breast cancer cell-lines, short-term tissue cultures of patient-derived mammary-tumors and a xenograft model. ATRA upregulates gene networks involved in interferon-responses, immune-modulation and antigen-presentation in retinoid-sensitive cells and tumors characterized by poor immunogenicity. ATRA-dependent upregulation of these gene networks is caused by a viral mimicry process, involving the activation of endogenous retroviruses. ATRA induces a non-canonical type of viral mimicry, which results in increased expression of the IRF1 (Interferon Responsive Factor 1) transcription factor and the DTX3L (Deltex-E3-Ubiquitin-Ligase-3L) downstream effector. Functional knockdown studies indicate that IRF1 and DTX3L are part of a negative feedback loop controlling ATRA-dependent growth inhibition of breast cancer cells. The study is of relevance from a clinical/therapeutic perspective. In fact, ATRA stimulates processes controlling the sensitivity to immuno-modulatory drugs, such as immune-checkpoint-inhibitors. This suggests that ATRA and immunotherapeutic agents represent rational combinations for the personalized treatment of breast cancer. Remarkably, ATRA-sensitivity seems to be relatively high in immune-cold mammary tumors, which are generally resistant to immunotherapy.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3