Radiomics-Based Classification of Tumor and Healthy Liver on Computed Tomography Images

Author:

Zossou Vincent-Béni Sèna1234ORCID,Gnangnon Freddy Houéhanou Rodrigue5ORCID,Biaou Olivier6,de Vathaire Florent123ORCID,Allodji Rodrigue S.123ORCID,Ezin Eugène C.78ORCID

Affiliation:

1. Université Paris-Saclay, UVSQ, Univ. Paris-Sud, CESP, Équipe Radiation Epidemiology, 94805 Villejuif, France

2. Department of Clinical Research, Radiation Epidemiology Team, Gustave Roussy, 94805 Villejuif, France

3. Centre de Recherche en Épidémiologie et Santé des Populations (CESP), U1018, Institut National de la Santé et de la Recherche Médicale, 94805 Villejuif, France

4. Ecole Doctorale Sciences de l’Ingénieur, Université d’Abomey-Calavi, Abomey-Calavi 384, Benin

5. Department of Visceral Surgery, CNHU-HKM, Cotonou 229, Benin

6. Department of Radiology, CNHU-HKM, Cotonou 229, Benin

7. Institut de Formation et de Recherche en Informatique, Université d’Abomey-Calavi, Abomey-Calavi 384, Benin

8. Institut de Mathématiques et de Sciences Physiques, Université d’Abomey-Calavi, Dangbo 384, Benin

Abstract

Liver malignancies, particularly hepatocellular carcinoma and metastasis, stand as prominent contributors to cancer mortality. Much of the data from abdominal computed tomography images remain underused by radiologists. This study explores the application of machine learning in differentiating tumor tissue from healthy liver tissue using radiomics features. Preoperative contrast-enhanced images of 94 patients were used. A total of 1686 features classified as first-order, second-order, higher-order, and shape statistics were extracted from the regions of interest of each patient’s imaging data. Then, the variance threshold, the selection of statistically significant variables using the Student’s t-test, and lasso regression were used for feature selection. Six classifiers were used to identify tumor and non-tumor liver tissue, including random forest, support vector machines, naive Bayes, adaptive boosting, extreme gradient boosting, and logistic regression. Grid search was used as a hyperparameter tuning technique, and a 10-fold cross-validation procedure was applied. The area under the receiver operating curve (AUROC) assessed the performance. The AUROC scores varied from 0.5929 to 0.9268, with naive Bayes achieving the best score. The radiomics features extracted were classified with a good score, and the radiomics signature enabled a prognostic biomarker for hepatic tumor screening.

Funder

French Government

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3