Gene Expression Profiling Elucidates Cellular Responses to NCX4040 in Human Ovarian Tumor Cells: Implications in the Mechanisms of Action of NCX4040

Author:

Sinha Birandra K.,Tokar Erik J.ORCID,Li Jianying,Bushel Pierre R.

Abstract

The nitric oxide donor, NCX4040 is a non-steroidal anti-inflammatory-NO donor and has been shown to be extremely cytotoxic to a number of human tumors, including ovarian tumors cells. We have found that NCX4040 is cytotoxic against both OVCAR-8 and its adriamycin-selected OVCAR-8 variant (NCI/ADR-RES) tumor cell lines. While the mechanism of action of NCX4040 is not entirely clear, we as well as others have shown that NCX4040 generates reactive oxygen species (ROS) and induces DNA damage in tumor cells. Recently, we have reported that NCX4040 treatment resulted in a significant depletion of cellular glutathione, and formation of both reactive oxygen and nitrogen species (ROS/RNS), resulting in oxidative stress in these tumor cells. Furthermore, our results indicated that more ROS/RNS were generated in OVCAR-8 cells than in NCI/ADR-RES cells due to increased activities of superoxide dismutase (SOD), glutathione peroxidase and transferases expressed in NCI/ADR-RES cells. Further studies suggested that NCX4040-induced cell death may be mediated by peroxynitrite formed from NCX4040 in cells. In this study we used microarray analysis following NCX4040 treatment of both OVCAR-8 and its ADR-resistant variant to identify various molecular pathways involved in NCX4040-induced cell death. Here, we report that NCX4040 treatment resulted in the differential induction of oxidative stress genes, inflammatory response genes (TNF, IL-1, IL-6 and COX2), DNA damage response and MAP kinase response genes. A mechanism of tumor cell death is proposed based on our findings where oxidative stress is induced by NCX4040 from simultaneous induction of NOX4, TNF-α and CHAC1 in tumor cell death.

Funder

National Institute of Environmental Health Sciences, NIH

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3