Breath Insights: Advancing Lung Cancer Early-Stage Detection Through AI Algorithms in Non-Invasive VOC Profiling Trials

Author:

Raimundo Bernardo S.1ORCID,Leitão Pedro M.2ORCID,Vinhas Manuel2ORCID,Pires Maria V.1ORCID,Quintas Laura B.1ORCID,Carvalheiro Catarina1,Barata Rita1,Ip Joana3ORCID,Coelho Ricardo1,Granadeiro Sofia1,Simões Tânia S.1,Gonçalves João1ORCID,Baião Renato1,Rocha Carla1,Alves Sandra4,Fidalgo Paulo5ORCID,Araújo Alípio5ORCID,Matos Cláudia1,Simões Susana1,Alves Paula6,Garrido Patrícia1,Pantarotto Marcos1ORCID,Carreiro Luís1,Matos Rogério1,Bárbara Cristina6ORCID,Cruz Jorge1,Gil Nuno1ORCID,Luis-Ferreira Fernando2ORCID,Vaz Pedro D.1ORCID

Affiliation:

1. Unidade de Pulmão, Centro Clínico Champalimaud, Fundação Champalimaud, 1400-038 Lisboa, Portugal

2. Departamento de Engenharia Electrotécnica e de Computadores, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal

3. Serviço de Radiologia, Centro Clínico Champalimaud, Fundação Champalimaud, 1400-038 Lisboa, Portugal

4. Unidade de Ensaios Clínicos, Centro Clínico Champalimaud, Fundação Champalimaud, 1400-038 Lisboa, Portugal

5. Unidade de Risco e Diagnóstico Precoce, Centro Clínico Champalimaud, Fundação Champalimaud, 1400-038 Lisboa, Portugal

6. Serviço de Pneumologia, Centro Hospitalar e Universitário Lisboa Norte, 1649-035 Lisboa, Portugal

Abstract

Background: Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Effective screening strategies for early diagnosis that could improve disease prognosis are lacking. Non-invasive breath analysis of volatile organic compounds (VOC) is a potential method for earlier LC detection. This study explores the association of VOC profiles with artificial intelligence (AI) to achieve a sensitive, specific, and fast method for LC detection. Patients and methods: Exhaled breath air samples were collected from 123 healthy individuals and 73 LC patients at two clinical sites. The enrolled patients had LC diagnosed with different stages. Breath samples were collected before undergoing any treatment, including surgery, and analyzed using gas chromatography coupled to ion-mobility spectrometry (GC-IMS). AI methods classified the overall chromatographic profiles. Results: GC-IMS is highly sensitive, yielding detailed chromatographic profiles. AI methods ranked the sets of exhaled breath profiles across both groups through training and validation steps, while qualitative information was deliberately not taking part nor influencing the results. The K-nearest neighbor (KNN) algorithm classified the groups with an accuracy of 90% (sensitivity = 87%, specificity = 92%). Narrowing the LC group to those only in early-stage IA, the accuracy was 90% (sensitivity = 90%, specificity = 93%). Conclusions: Evaluation of the global exhaled breath profiles using AI algorithms enabled LC detection and demonstrated that qualitative information may not be required, thus easing the frustration that many studies have experienced so far. The results show that this approach coupled with screening protocols may improve earlier detection of LC and hence its prognosis.

Funder

Champalimaud Foundation

Publisher

MDPI AG

Reference46 articles.

1. Ferlay, J., Ervik, M., Lam, F., Laversanne, M., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I., and Bray, F. (2024, April 02). Global Cancer Observatory (GCO) Cancer Today. Available online: https://gco.iarc.who.int/media/globocan/factsheets/cancers/15-trachea-bronchus-and-lung-fact-sheet.pdf.

2. Stage Shift Improves Lung Cancer Survival: Real-World Evidence;Yang;J. Thorac. Oncol.,2022

3. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial;Scholten;N. Engl. J. Med.,2020

4. Global Patterns of Cancer Incidence and Mortality Rates and Trends;Jemal;Cancer Epidemiol. Biomark. Prev.,2010

5. Cancer statistics, 2020;Siegel;CA Cancer J. Clin.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3