Identification of Gene Expression in Different Stages of Breast Cancer with Machine Learning

Author:

Abidalkareem Ali1,Ibrahim Ali K.12,Abd Moaed3ORCID,Rehman Oneeb1ORCID,Zhuang Hanqi1ORCID

Affiliation:

1. EECS Department, Florida Atlantic University, Boca Raton, FL 33431, USA

2. Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA

3. Ocean and Mechanical Engineering Department, Florida Atlantic University, Boca Raton, FL 33431, USA

Abstract

Determining the tumor origin in humans is vital in clinical applications of molecular diagnostics. Metastatic cancer is usually a very aggressive disease with limited diagnostic procedures, despite the fact that many protocols have been evaluated for their effectiveness in prognostication. Research has shown that dysregulation in miRNAs (a class of non-coding, regulatory RNAs) is remarkably involved in oncogenic conditions. This research paper aims to develop a machine learning model that processes an array of miRNAs in 1097 metastatic tissue samples from patients who suffered from various stages of breast cancer. The suggested machine learning model is fed with miRNA quantitative read count data taken from The Cancer Genome Atlas Data Repository. Two main feature-selection techniques have been used, mainly Neighborhood Component Analysis and Minimum Redundancy Maximum Relevance, to identify the most discriminant and relevant miRNAs for their up-regulated and down-regulated states. These miRNAs are then validated as biological identifiers for each of the four cancer stages in breast tumors. Both machine learning algorithms yield performance scores that are significantly higher than the traditional fold-change approach, particularly in earlier stages of cancer, with Neighborhood Component Analysis and Minimum Redundancy Maximum Relevance achieving accuracy scores of up to 0.983 and 0.931, respectively, compared to 0.920 for the FC method. This study underscores the potential of advanced feature-selection methods in enhancing the accuracy of cancer stage identification, paving the way for improved diagnostic and therapeutic strategies in oncology.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3