Abstract
To support the implementation of genome-based precision medicine, we developed machine learning models that predict the recurrence of patients with gynecologic cancer in using immune checkpoint inhibitors (ICI) based on clinical and pathologic characteristics, including Lynch syndrome-related screening markers such as immunohistochemistry (IHC) and microsatellite instability (MSI) tests. To accomplish our goal, we reviewed the patient demographics, clinical data, and pathological results from their medical records. Then we identified seven potential characteristics (four MMR IHC [MLH1, MSH2, MSH6, and PMS2], MSI, Age 60, and tumor size). Following that, predictive models were built based on these variables using six machine learning algorithms: logistic regression (LR), support vector machine (SVM), naive Bayes (NB), random forest (RF), gradient boosting (GB), and extreme gradient boosting (EGB) (XGBoost). The experimental results showed that the RF-based model performed best at predicting gynecologic cancer recurrence, with AUCs of 0.818 and 0.826 for the 5-fold cross-validation (CV) and 5-fold CV with 10 repetitions, respectively. This study provides novel and baseline results about predicting the recurrence of gynecologic cancer in patients using ICI by using machine learning methods based on Lynch syndrome-related screening markers.
Funder
National Research Foundation of Korea (NRF) grant funded by the Korean government
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献