Serum Response Factor-Regulated IDO1/Kyn-Ahr Pathway Promotes Tumorigenesis of Oral Squamous Cell Carcinoma

Author:

Xu Mingyan1,Zhu Feixiang2,Yin Qi3,Yin Hao3,Fang Shaobin3,Luo Gongwei2,Huang Jie2,Huang Wenxia1,Liu Fan2,Zhong Ming14,Deng Xiaoling2

Affiliation:

1. Department of Implantology, Stomatological Hospital of Xiamen Medical College & Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361008, China

2. Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen 361104, China

3. Department of Stomatology of Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China

4. Department of Stomatology, Xiang’an Hospital of Xiamen University, Xiamen 361104, China

Abstract

Serum response factor (SRF) regulates pro-carcinogenic genes in various cancers, but its role in oral squamous cell carcinoma (OSCC) remains unclear. SRF expression in 70 OSCC samples was detected via immunohistochemistry. Abundant SRF expressed in OSCC tissues was closely associated with tumor metastasis. SRF-overexpressing OSCC cells were constructed to evaluate how SRF affects OSCC cell tumorigenesis and epithelial-to-mesenchymal transition (EMT) in vitro and in vivo. Overexpressed SRF increased OSCC cell migration and invasion in vitro and tumor growth and invasion in vivo. This promoted EMT, characterized by decreased and increased expression of E- and N-cadherin, respectively. Furthermore, an analysis of RNA sequences of transcriptional targets of SRF showed that SRF transactivated the indoleamine 2, 3-dioxygenase 1 (IDO1)/kynurenine-aryl hydrocarbon receptor (Kyn-AhR) signaling pathway in OSCC cell lines. Direct SRF binding to the IDO1 gene promoter upregulated transcription, which was detected through chromatin immunoprecipitation and dual luciferase reporter assays. Inhibiting IDO1 or AhR impaired SRF-induced migration and invasion and prevented EMT in OSCC cells. Our results demonstrated that SRF is a critical regulator of the IDO1/Kyn-AhR signaling pathway. This in turn increases OSCC cell migration and invasion by modulating EMT, which, consequently, favors OSCC cell growth and metastasis. We revealed a novel molecular mechanism through which SRF modulates OSCC metastasis. This should provide potential targets or biomarkers for OSCC diagnosis and treatment.

Funder

National Natural Science Foundation of China

Xiamen Natural Science Foundation Project

Xiamen Health Commission project

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3