Scale-Aware Edge-Preserving Full Waveform Inversion with Diffusion Filter for Crosshole Sensor Arrays

Author:

Yang Jixin12ORCID,He Xiao12,Chen Hao12,Li Jiacheng12,Wang Wenwen3

Affiliation:

1. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. China United Coalbed Methane Corporation, Ltd., Beijing 100011, China

Abstract

Full waveform inversion (FWI) is recognized as a leading data-fitting methodology, leveraging the detailed information contained in physical waveform data to construct accurate, high-resolution velocity models essential for crosshole surveys. Despite its effectiveness, FWI is often challenged by its sensitivity to data quality and inherent nonlinearity, which can lead to instability and the inadvertent incorporation of noise and extraneous data into inversion models. To address these challenges, we introduce the scale-aware edge-preserving FWI (SAEP-FWI) technique, which integrates a cutting-edge nonlinear anisotropic hybrid diffusion (NAHD) filter within the gradient computation process. This innovative filter effectively reduces noise while simultaneously enhancing critical small-scale structures and edges, significantly improving the fidelity and convergence of the FWI inversion results. The application of SAEP-FWI across a variety of experimental and authentic crosshole datasets clearly demonstrates its effectiveness in suppressing noise and preserving key scale-aware and edge-delineating features, ultimately leading to clear inversion outcomes. Comparative analyses with other FWI methods highlight the performance of our technique, showcasing its ability to produce images of notably higher quality. This improvement offers a robust solution that enhances the accuracy of subsurface imaging.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3