Control Strategy of a Multi-Source System Based on Batteries, Wind Turbines, and Electrolyzers for Hydrogen Production

Author:

Touré Ibrahima12,Payman Alireza1ORCID,Camara Mamadou Baïlo12ORCID,Dakyo Brayima1ORCID

Affiliation:

1. GREAH-Laboratory, Faculty of Technical Sciences, University of Le Havre Normandie, 75 Rue Bellot, 76600 Le Havre, France

2. Laboratoire de Recherche en Sciences Appliquées de Mamou (LaReSA), Institut Supérieur de Technologie, Telico, Mamou 063, Guinea

Abstract

Multi-source systems are gaining attention as an effective approach to seamlessly incorporate renewable energies within electrical networks. These systems offer greater flexibility and better energy management possibilities. The considered multi-source system is based on a 50 MW wind farm connected to battery energy storage and electrolyzers through modular multi-level DC/DC converters. Wind energy systems interface with the DC-bus via rectifier power electronics that regulate the DC-bus voltage and implement optimal power extraction algorithms for efficient wind turbine operation. However, integrating intermittent renewable energy sources with optimal microgrid management poses significant challenges. It is essential to mention that the studied multi-source system is connected to the DC loads (modular electrolyzers and local load). This work proposes a new regulation method designed specifically to improve the performance of the system. In this strategy, the excess wind farm energy is converted into hydrogen gas and may be stored in the batteries. On the other hand, when the wind speed is low or there is no excess of energy, electrolyzer operations are stopped. The battery energy management depends on the power balance between the DC load (modular electrolyzers and local load) requirements and the energy produced from the wind farm. This control should lead to eliminating the fluctuations in energy production and should have a high dynamic performance. This work presents a nonlinear control method using a backstepping concept to improve the performances of the system operations and to achieve the mentioned goals. To evaluate the developed control strategy, some simulations based on real meteorological wind speed data using Matlab are conducted. The simulation results show that the proposed backstepping control strategy is satisfactory. Indeed, by integrating this control strategy into the multi-source system, we offer a flexible solution for battery and electrolyzer applications, contributing to the transition to a cleaner, more resilient energy system. This methodology offers intelligent and efficient energy management.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3