Using Deep Learning to Distinguish Highly Malignant Uveal Melanoma from Benign Choroidal Nevi

Author:

Hoffmann Laura1ORCID,Runkel Constance B.1,Künzel Steffen1,Kabiri Payam1,Rübsam Anne1ORCID,Bonaventura Theresa1,Marquardt Philipp2,Haas Valentin2ORCID,Biniaminov Nathalie2,Biniaminov Sergey2,Joussen Antonia M.1,Zeitz Oliver1ORCID

Affiliation:

1. Department of Ophthalmology, Charité University Hospital Berlin, 12203 Berlin, Germany

2. HS Analysis GmbH, 76131 Karlsruhe, Germany

Abstract

Background: This study aimed to evaluate the potential of human–machine interaction (HMI) in a deep learning software for discerning the malignancy of choroidal melanocytic lesions based on fundus photographs. Methods: The study enrolled individuals diagnosed with a choroidal melanocytic lesion at a tertiary clinic between 2011 and 2023, resulting in a cohort of 762 eligible cases. A deep learning-based assistant integrated into the software underwent training using a dataset comprising 762 color fundus photographs (CFPs) of choroidal lesions captured by various fundus cameras. The dataset was categorized into benign nevi, untreated choroidal melanomas, and irradiated choroidal melanomas. The reference standard for evaluation was established by retinal specialists using multimodal imaging. Trinary and binary models were trained, and their classification performance was evaluated on a test set consisting of 100 independent images. The discriminative performance of deep learning models was evaluated based on accuracy, recall, and specificity. Results: The final accuracy rates on the independent test set for multi-class and binary (benign vs. malignant) classification were 84.8% and 90.9%, respectively. Recall and specificity ranged from 0.85 to 0.90 and 0.91 to 0.92, respectively. The mean area under the curve (AUC) values were 0.96 and 0.99, respectively. Optimal discriminative performance was observed in binary classification with the incorporation of a single imaging modality, achieving an accuracy of 95.8%. Conclusions: The deep learning models demonstrated commendable performance in distinguishing the malignancy of choroidal lesions. The software exhibits promise for resource-efficient and cost-effective pre-stratification.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3