Antioxidant Systematic Alteration Was Responsible for Injuries Inflicted on the Marine Blue Mussel Mytilus edulis Following Strontium Exposure

Author:

Cheng Zihua12,Xu Mengxue34,Cao Qiyue1,Chi Wendan34,Cao Sai1,Zhou Zhongyuan12,Wang You12

Affiliation:

1. College of Marien Life Sciences, Ocean University of China, Qingdao 266000, China

2. Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266200, China

3. Marine Science Research Institute of Shandong Province, Qingdao 266100, China

4. Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Qingdao 266100, China

Abstract

The ionic properties of strontium (Sr), a significant artificial radionuclide in the marine environment, were estimated using a stable nuclide-substituting experimental system under controlled laboratory conditions. The bio-accumulation of Sr and its impacts, as well as any possible hidden mechanisms, were evaluated based on the physiological alterations of the sentinel blue mussel Mytilus edulis. The mussels were exposed to a series of stress-inducing concentrations, with the highest solubility being 0.2 g/L. No acute lethality was observed during the experiment, but sublethal damage was evident. Sr accumulated in a tissue-specific way, and hemolymph was the target, with the highest accumulating concentration being 64.46 µg/g wet weight (ww). At the molecular level, increases in the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and changes in ROS components (H2O2, O2−, and -OH) and antioxidant system activity indicated that the redox equilibrium state in hemocytes was disturbed. Furthermore, the rise in the hemocyte micronucleus (MN) rate (4‰ in the high-concentration group) implied DNA damage. At the cellular level, the structures of hemocytes were damaged, especially with respect to lysosomes, which play a crucial role in phagocytosis. Lysosomal membrane stability (LMS) was also affected, and both acid phosphatase (ACP) and alkaline phosphatase (AKP) activities were reduced, resulting in a significant decline in phagocytosis. The hemolymph population structure at the organ level was disturbed, with large changes in hemocyte number and mortality rate, along with changes in component ratios. These toxic effects were evaluated by employing the adverse outcome pathway (AOP) framework. The results suggested that the disruption of intracellular redox homeostasis is a possible explanation for Sr-induced toxicity in M. edulis.

Funder

Qingdao Natural Science Foundation

Pilot National Laboratory for Marine Science and Technology

Natural Science Foundation of China

Zhejiang Environmental Protection Scientific Research Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3