Exploring Influence of Production Area and Harvest Time on Specialized Metabolite Content of Glycyrrhiza glabra Leaves and Evaluation of Antioxidant and Anti-Aging Properties

Author:

Docimo Teresa1ORCID,Celano Rita23ORCID,Lambiase Alessia34ORCID,Di Sanzo Rosa5ORCID,Serio Simona26,Santoro Valentina23,Coccetti Paola34ORCID,Russo Mariateresa5,Rastrelli Luca23ORCID,Piccinelli Anna Lisa23ORCID

Affiliation:

1. Institute of Bioscience and BioResources, National Research Council, 80055 Portici, Italy

2. Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy

3. National Biodiversity Future Center (NBFC), 90133 Palermo, Italy

4. Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy

5. Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via Salita Melissari, 89124 Reggio Calabria, Italy

6. PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy

Abstract

Calabrian Glycyrrhiza glabra is one of the most appreciated licorice varieties worldwide, and its leaves are emerging as a valuable source of bioactive compounds. Nevertheless, this biomass is usually discarded, and its valorization could contribute to boost the economic value of the licorice production chain. In this study, the effects of production area and harvest time on the specialized metabolite content of G. glabra leaves (GGL) and also the antioxidant and anti-aging properties are evaluated to explore the potential of this untapped resource and to select the most optimal harvesting practices. GGL exhibited high levels of specialized metabolites (4–30 g/100 g of dry leaf) and the most abundant ones are pinocembrin, prenylated flavanones (licoflavanone and glabranin), and prenylated dihydrostilbenes. Their levels and antioxidant capacity in extracts are influenced by both production area and harvest time, showing a decisive role on specialized metabolites accumulation. Interestingly, GGL extracts strongly attenuate the toxicity of α-synuclein, the intracellular reactive oxygen species (ROS) content, and cellular senescence on Saccharomyces cerevisiae expressing human α-synuclein model, showing great potential to prevent aging and age-related disorders. These results provide insights into the phytochemical dynamics of GGL, identifying the best harvesting site and period to obtain bioactive-rich sources with potential uses in the food, nutraceutical, and pharmaceutical sectors.

Funder

European Union—NextGenerationEU

Italian Ministry of University and Research, CUP

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3