Boesenbergia rotunda and Its Pinostrobin for Atopic Dermatitis: Dual 5-Lipoxygenase and Cyclooxygenase-2 Inhibitor and Its Mechanistic Study through Steady-State Kinetics and Molecular Modeling

Author:

Liana Desy1ORCID,Eurtivong Chatchakorn2ORCID,Phanumartwiwath Anuchit1ORCID

Affiliation:

1. College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand

2. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand

Abstract

Human 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) are potential targets for suppressing pruritic skin inflammation in atopic dermatitis (AD). In addition, Staphylococcus aureus colonization and oxidative stress worsen AD skin conditions. We aimed to investigate anti-inflammatory activity, using 5-LOX and COX-2 inhibitions, and the anti-staphylococcal, and antioxidant potentials of several medicinal plants bio-prospected from traditional medicine related to AD pathogenesis. Essential oils and hexane fractions were prepared and analyzed using gas chromatography–mass spectrometry. Boesenbergia rotunda hexane extract displayed anti-Staphylococcus aureus (MIC = 10 µg/mL) and antioxidant activities (IC50 = 557.97 and 2651.67 µg/mL against DPPH and NO radicals, respectively). A major flavonoid, pinostrobin, was further nonchromatographically isolated. Pinostrobin was shown to be a potent 5-LOX inhibitor (IC50 = 0.499 µM) compared to nordihydroguaiaretic acid (NDGA; IC50 = 5.020 µM) and betamethasone dipropionate (BD; IC50 = 2.077 µM) as the first-line of AD treatment. Additionally, pinostrobin inhibited COX-2 (IC50 = 285.67 µM), which was as effective as diclofenac sodium (IC50 = 290.35 µM) and BD (IC50 = 240.09 µM). This kinetic study and molecular modeling showed the mixed-type inhibition of NDGA and pinostrobin against 5-LOX. This study suggests that B. rotunda and its bioactive pinostrobin have promising properties for AD therapy.

Funder

Grants for Development of New Faculty Staff, Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference68 articles.

1. Induction of psoriasis- and atopic dermatitis-like phenotypes in 3D skin equivalents with a fibroblast-derived matrix;Morgner;Sci. Rep.,2023

2. Trends in nanoformulations for atopic dermatitis treatment;Fraceto;Expert Opin. Drug Deliv.,2020

3. Review of atopic dermatitis and topical therapies;Mayba;J. Cutan. Med. Surg.,2017

4. Skin-protective effects of a zinc oxide-functionalized textile and its relevance for atopic dermatitis;Wiegand;Clin. Cosmet. Investig. Dermatol.,2013

5. Topical corticosteroids in atopic dermatitis;Atherton;BMJ,2003

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3