Construction Stability Analysis and Field Monitoring of Shallowly Buried Large-Section Tunnels in Loess Strata

Author:

Zheng Fang12,Li Wenqiang12ORCID,Song Zhanping12ORCID,Wang Jiahui12,Zhang Yuwei12,Liu Naifei12,Xiao Kehui1,Wang Yan12

Affiliation:

1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an 710055, China

Abstract

Reasonable excavation step footage and lining support timing are highly important for improving tunnel construction efficiency and ensuring construction safety. Taking the Huanxian No. 1 Tunnel of the Xi-Yin railway as the basis of this study, a 3D numerical model was established using MIDAS GTS NX290 finite element software. This model was used to investigate the deformation and force characteristics of the tunnel-surrounding rock and support structures under three different excavation footages and four different lining construction timings; the numerical results were then compared with the on-site monitoring results. This research aimed to determine reasonable excavation parameters for the three-bench seven-step excavation method used in shallowly buried loess tunnels. The results revealed positive correlations between the excavation step footage and surface subsidence, crown subsidence, and clearance convergence. An excavation footage of 3 m could balance construction efficiency and safety effectively. Keeping the secondary lining construction time unchanged, the early closure of the initial support was beneficial for reducing the force on the secondary lining. Keeping the early closure time of the initial support unchanged, the early construction of the secondary lining would lead to an increase in the force on the secondary lining. The initial support of the tunnel is recommended to be closed as early as possible, and the construction of the secondary lining should be shifted by 21 m behind the upper step palm surface. By comparing the on-site monitoring data with the numerical simulation results, similar trends were observed, providing reference and guidance for the subsequent construction of large-section tunnels in shallowly buried loess formations.

Funder

Shaanxi Innovation Capability Support Plan—Science and Technology Innovation Team

General Project of Shaanxi Natural Science Basic Research Program

Youth Innovation Team of Shaanxi Universities

Key Laboratory Scientific Research Program Project of Shaanxi Provincial Education Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3