Enzymatic Hydrogen Electrosynthesis at Enhanced Current Density Using a Redox Polymer

Author:

Ruth John C.,Schwarz Fabian M.,Müller Volker,Spormann Alfred M.

Abstract

High-temperature tolerant enzymes offer multiple advantages over enzymes from mesophilic organisms for the industrial production of sustainable chemicals due to high specific activities and stabilities towards fluctuations in pH, heat, and organic solvents. The production of molecular hydrogen (H2) is of particular interest because of the multiple uses of hydrogen in energy and chemicals applications, and the ability of hydrogenase enzymes to reduce protons to H2 at a cathode. We examined the activity of Hydrogen-Dependent CO2 Reductase (HDCR) from the thermophilic bacterium Thermoanaerobacter kivui when immobilized in a redox polymer, cobaltocene-functionalized polyallylamine (Cc-PAA), on a cathode for enzyme-mediated H2 formation from electricity. The presence of Cc-PAA increased reductive current density 340-fold when used on an electrode with HDCR at 40 °C, reaching unprecedented current densities of up to 3 mA·cm−2 with minimal overpotential and high faradaic efficiency. In contrast to other hydrogenases, T. kivui HDCR showed substantial reversibility of CO-dependent inactivation, revealing an opportunity for usage in gas mixtures containing CO, such as syngas. This study highlights the important potential of combining redox polymers with novel enzymes from thermophiles for enhanced electrosynthesis.

Funder

Achievement Rewards for College Scientists Foundation

Stanford Global Climate and Energy Project

European Research Council

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3