Efficient 1-Hydroxy-2-Butanone Production from 1,2-Butanediol by Whole Cells of Engineered E. coli

Author:

Lin Hui,Xu Jiayin,Sun Wenlian,Hu Wujia,Gao Huifang,Hu Kaihui,Qiu Junzhi,Huang Binbin,Zhang LiaoyuanORCID

Abstract

1-Hydroxy-2-butanone (HB) is a key intermediate for anti-tuberculosis pharmaceutical ethambutol. Commercially available HB is primarily obtained by the oxidation of 1,2-butanediol (1,2-BD) using chemical catalysts. In present study, seven enzymes including diol dehydrogenases, secondary alcohol dehydrogenases and glycerol dehydrogenase were chosen to evaluate their abilities in the conversion of 1,2-BD to HB. The results showed that (2R, 3R)- and (2S, 3S)-butanediol dehydrogenase (BDH) from Serratia sp. T241 could efficiently transform (R)- and (S)-1,2-BD into HB respectively. Furthermore, two biocatalysts co-expressing (2R, 3R)-/(2S, 3S)-BDH, NADH oxidase and hemoglobin protein in Escherichia coli were developed to convert 1,2-BD mixture into HB, and the transformation conditions were optimized. Maximum HB yield of 341.35 and 188.80 mM could be achieved from 440 mM (R)-1,2-BD and 360 mM (S)-1,2-BD by E. coli (pET-rrbdh-nox-vgb) and E. coli (pET-ssbdh-nox-vgb) under the optimized conditions. In addition, two biocatalysts showed the ability in chiral resolution of 1,2-BD isomers, and 135.68 mM (S)-1,2-BD and 112.43 mM (R)-1,2-BD with the purity of 100% could be obtained from 300 and 200 mM 1,2-BD mixture by E. coli (pET-rrbdh-nox-vgb) and E. coli (pET-ssbdh-nox-vgb), respectively. These results provided potential application for HB production from 1,2-BD mixture and chiral resolution of (R)-1,2-BD and (S)-1,2-BD.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3