miRCOVID-19: Potential Targets of Human miRNAs in SARS-CoV-2 for RNA-Based Drug Discovery

Author:

Alam TanvirORCID,Lipovich Leonard

Abstract

Sense-antisense interactions of long and short RNAs in human cells are integral to post-transcriptional gene regulation, in particular that of mRNAs by microRNAs. Many viruses, including severe acute respiratory syndrome coronavirus 2 SARS-CoV-2 (the causative agent of coronavirus disease 2019, COVID-19), have RNA genomes, and interactions between host and viral RNAs, while known to be functional in other viral diseases, have not yet been investigated in COVID-19. To remedy this gap in knowledge, we present miRCOVID-19, a computational meta-analysis framework identifying the predicted binding sites of human microRNAs along the SARS-CoV-2 RNA genome. To highlight the potential relevance of SARS-CoV-2-genome-complementary miRNAs to COVID-19 pathogenesis, we assessed their expression in COVID-19-relevant tissues using public transcriptome data. miRCOVID-19 identified 14 high-confidence mature miRNAs that are highly likely to interact with the SARS-CoV-2 genome and are expressed in diverse respiratory epithelial and immune cell types that are relevant to COVID-19 pathogenesis. As a proof of principle, we have shown that human miR-122, a previously known co-factor of another RNA virus, the hepatitis C virus (HCV) whose genome it binds as a prerequisite for pathogenesis, was predicted to also bind the SARS-CoV-2 RNA genome with high affinity, suggesting the perspective of repurposing anti-HCV RNA-based drugs, such as Miravirsen, to treat COVID-19. Our study is the first to identify all high-confidence binding sites of human miRNAs in the SARS-CoV-2 genome using multiple tools. Our work directly facilitates experimental validation of the reported targets, which would accelerate RNA-based drug discovery for COVID-19 and has the potential to provide new avenues for treating symptomatic COVID-19, and block SARS-CoV-2 replication, in humans.

Publisher

MDPI AG

Subject

Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3